Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nucleic Acids Res ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783107

RESUMO

GCMS-ID (Gas Chromatography Mass Spectrometry compound IDentifier) is a webserver designed to enable the identification of compounds from GC-MS experiments. GC-MS instruments produce both electron impact mass spectra (EI-MS) and retention index (RI) data for as few as one, to as many as hundreds of different compounds. Matching the measured EI-MS, RI or EI-MS + RI data to experimentally collected EI-MS and/or RI reference libraries allows facile compound identification. However, the number of available experimental RI and EI-MS reference spectra, especially for metabolomics or exposomics-related studies, is disappointingly small. Using machine learning to accurately predict the EI-MS spectra and/or RIs for millions of metabolomics and/or exposomics-relevant compounds could (partially) solve this spectral matching problem. This computational approach to compound identification is called in silico metabolomics. GCMS-ID brings this concept of in silico metabolomics closer to reality by intelligently integrating two of our previously published webservers: CFM-EI and RIpred. CFM-EI is an EI-MS spectral prediction webserver, and RIpred is a Kovats RI prediction webserver. We have found that GCMS-ID can accurately identify compounds from experimental RI, EI-MS or RI + EI-MS data through matching to its own large library of >1 million predicted RI/EI-MS values generated for metabolomics/exposomics-relevant compounds. GCMS-ID can also predict the RI or EI-MS spectrum from a user-submitted structure or annotate a user-submitted EI-MS spectrum. GCMS-ID is freely available at https://gcms-id.ca/.

2.
Nucleic Acids Res ; 52(D1): D654-D662, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962386

RESUMO

PathBank (https://pathbank.org) and its predecessor database, the Small Molecule Pathway Database (SMPDB), have been providing comprehensive metabolite pathway information for the metabolomics community since 2010. Over the past 14 years, these pathway databases have grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in computing technology. This year's update, PathBank 2.0, brings a number of important improvements and upgrades that should make the database more useful and more appealing to a larger cross-section of users. In particular, these improvements include: (i) a significant increase in the number of primary or canonical pathways (from 1720 to 6951); (ii) a massive increase in the total number of pathways (from 110 234 to 605 359); (iii) significant improvements to the quality of pathway diagrams and pathway descriptions; (iv) a strong emphasis on drug metabolism and drug mechanism pathways; (v) making most pathway images more slide-compatible and manuscript-compatible; (vi) adding tools to support better pathway filtering and selecting through a more complete pathway taxonomy; (vii) adding pathway analysis tools for visualizing and calculating pathway enrichment. Many other minor improvements and updates to the content, the interface and general performance of the PathBank website have also been made. Overall, we believe these upgrades and updates should greatly enhance PathBank's ease of use and its potential applications for interpreting metabolomics data.


Assuntos
Bases de Dados Genéticas , Redes e Vias Metabólicas , Metabolômica , Redes e Vias Metabólicas/genética , Metaboloma , Metabolômica/métodos , Internet
3.
Nucleic Acids Res ; 52(D1): D1265-D1275, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953279

RESUMO

First released in 2006, DrugBank (https://go.drugbank.com) has grown to become the 'gold standard' knowledge resource for drug, drug-target and related pharmaceutical information. DrugBank is widely used across many diverse biomedical research and clinical applications, and averages more than 30 million views/year. Since its last update in 2018, we have been actively enhancing the quantity and quality of the drug data in this knowledgebase. In this latest release (DrugBank 6.0), the number of FDA approved drugs has grown from 2646 to 4563 (a 72% increase), the number of investigational drugs has grown from 3394 to 6231 (a 38% increase), the number of drug-drug interactions increased from 365 984 to 1 413 413 (a 300% increase), and the number of drug-food interactions expanded from 1195 to 2475 (a 200% increase). In addition to this notable expansion in database size, we have added thousands of new, colorful, richly annotated pathways depicting drug mechanisms and drug metabolism. Likewise, existing datasets have been significantly improved and expanded, by adding more information on drug indications, drug-drug interactions, drug-food interactions and many other relevant data types for 11 891 drugs. We have also added experimental and predicted MS/MS spectra, 1D/2D-NMR spectra, CCS (collision cross section), RT (retention time) and RI (retention index) data for 9464 of DrugBank's 11 710 small molecule drugs. These and other improvements should make DrugBank 6.0 even more useful to a much wider research audience ranging from medicinal chemists to metabolomics specialists to pharmacologists.


Assuntos
Bases de Conhecimento , Metabolômica , Espectrometria de Massas em Tandem , Bases de Dados Factuais , Interações Alimento-Droga
4.
Nucleic Acids Res ; 51(W1): W443-W450, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37194694

RESUMO

PHASTEST (PHAge Search Tool with Enhanced Sequence Translation) is the successor to the PHAST and PHASTER prophage finding web servers. PHASTEST is designed to support the rapid identification, annotation and visualization of prophage sequences within bacterial genomes and plasmids. PHASTEST also supports rapid annotation and interactive visualization of all other genes (protein coding regions, tRNA/tmRNA/rRNA sequences) in bacterial genomes. Given that bacterial genome sequencing has become so routine, the need for fast tools to comprehensively annotate bacterial genomes has become progressively more important. PHASTEST not only offers faster and more accurate prophage annotations than its predecessors, it also provides more complete whole genome annotations and much improved genome visualization capabilities. In standardized tests, we found that PHASTEST is 31% faster and 2-3% more accurate in prophage identification than PHASTER. Specifically, PHASTEST can process a typical bacterial genome in 3.2 min (raw sequence) or in 1.3 min when given a pre-annotated GenBank file. Improvements in PHASTEST's ability to annotate bacterial genomes now make it a particularly powerful tool for whole genome annotation. In addition, PHASTEST now offers a much more modern and responsive visualization interface that allows users to generate, edit, annotate and interactively visualize (via zooming, rotating, dragging, panning, resetting), colourful, publication quality genome maps. PHASTEST continues to offer popular options such as an API for programmatic queries, a Docker image for local installations, support for multiple (metagenomic) queries and the ability to perform automated look-ups against thousands of previously PHAST-annotated bacterial genomes. PHASTEST is available online at https://phastest.ca.


Assuntos
Bases de Dados de Ácidos Nucleicos , Prófagos , Ferramenta de Busca , Software , Genoma Bacteriano , Anotação de Sequência Molecular , Plasmídeos , Prófagos/genética
5.
Nucleic Acids Res ; 51(W1): W459-W467, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37099365

RESUMO

PlasMapper 3.0 is a web server that allows users to generate, edit, annotate and interactively visualize publication quality plasmid maps. Plasmid maps are used to plan, design, share and publish critical information about gene cloning experiments. PlasMapper 3.0 is the successor to PlasMapper 2.0 and offers many features found only in commercial plasmid mapping/editing packages. PlasMapper 3.0 allows users to paste or upload plasmid sequences as input or to upload existing plasmid maps from its large database of >2000 pre-annotated plasmids (PlasMapDB). This database can be searched by plasmid names, sequence features, restriction sites, preferred host organisms, and sequence length. PlasMapper 3.0 also supports the annotation of new or never-before-seen plasmids using its own feature database that contains common promoters, terminators, regulatory sequences, replication origins, selectable markers and other features found in most cloning plasmids. PlasMapper 3.0 has several interactive sequence editors/viewers that allow users to select and view plasmid regions, insert genes, modify restriction sites or perform codon optimization. The graphics for PlasMapper 3.0 have also been substantially upgraded. It now offers an interactive, full-color plasmid viewer/editor that allows users to zoom, rotate, re-color, linearize, circularize, edit annotated features and modify plasmid images or labels to improve the esthetic qualities of their plasmid map and textual displays. All the plasmid images and textual displays are downloadable in multiple formats. PlasMapper 3.0 is available online at https://plasmapper.ca.


Assuntos
Software , Interface Usuário-Computador , Plasmídeos/genética , Computadores , Sequência de Bases , Internet
6.
Nucleic Acids Res ; 51(D1): D611-D620, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36215042

RESUMO

The Human Microbial Metabolome Database (MiMeDB) (https://mimedb.org) is a comprehensive, multi-omic, microbiome resource that connects: (i) microbes to microbial genomes; (ii) microbial genomes to microbial metabolites; (iii) microbial metabolites to the human exposome and (iv) all of these 'omes' to human health. MiMeDB was established to consolidate the growing body of data connecting the human microbiome and the chemicals it produces to both health and disease. MiMeDB contains detailed taxonomic, microbiological and body-site location data on most known human microbes (bacteria and fungi). This microbial data is linked to extensive genomic and proteomic sequence data that is closely coupled to colourful interactive chromosomal maps. The database also houses detailed information about all the known metabolites generated by these microbes, their structural, chemical and spectral properties, the reactions and enzymes responsible for these metabolites and the primary exposome sources (food, drug, cosmetic, pollutant, etc.) that ultimately lead to the observed microbial metabolites in humans. Additional, extensively referenced data about the known or presumptive health effects, measured biosample concentrations and human protein targets for these compounds is provided. All of this information is housed in richly annotated, highly interactive, visually pleasing database that has been designed to be easy to search, easy to browse and easy to navigate. Currently MiMeDB contains data on 626 health effects or bioactivities, 1904 microbes, 3112 references, 22 054 reactions, 24 254 metabolites or exposure chemicals, 648 861 MS and NMR spectra, 6.4 million genes and 7.6 billion DNA bases. We believe that MiMeDB represents the kind of integrated, multi-omic or systems biology database that is needed to enable comprehensive multi-omic integration.


Assuntos
Metabolômica , Proteômica , Humanos , Metaboloma/genética , Bases de Dados Factuais , Gerenciamento de Dados
7.
Nucleic Acids Res ; 51(D1): D1220-D1229, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305829

RESUMO

The Chemical Functional Ontology (ChemFOnt), located at https://www.chemfont.ca, is a hierarchical, OWL-compatible ontology describing the functions and actions of >341 000 biologically important chemicals. These include primary metabolites, secondary metabolites, natural products, food chemicals, synthetic food additives, drugs, herbicides, pesticides and environmental chemicals. ChemFOnt is a FAIR-compliant resource intended to bring the same rigor, standardization and formal structure to the terms and terminology used in biochemistry, food chemistry and environmental chemistry as the gene ontology (GO) has brought to molecular biology. ChemFOnt is available as both a freely accessible, web-enabled database and a downloadable Web Ontology Language (OWL) file. Users may download and deploy ChemFOnt within their own chemical databases or integrate ChemFOnt into their own analytical software to generate machine readable relationships that can be used to make new inferences, enrich their omics data sets or make new, non-obvious connections between chemicals and their direct or indirect effects. The web version of the ChemFOnt database has been designed to be easy to search, browse and navigate. Currently ChemFOnt contains data on 341 627 chemicals, including 515 332 terms or definitions. The functional hierarchy for ChemFOnt consists of four functional 'aspects', 12 functional super-categories and a total of 173 705 functional terms. In addition, each of the chemicals are classified into 4825 structure-based chemical classes. ChemFOnt currently contains 3.9 million protein-chemical relationships and ∼10.3 million chemical-functional relationships. The long-term goal for ChemFOnt is for it to be adopted by databases and software tools used by the general chemistry community as well as the metabolomics, exposomics, metagenomics, genomics and proteomics communities.


Assuntos
Bases de Dados de Compostos Químicos , Software , Bases de Dados Factuais , Ontologia Genética , Genômica , Proteômica
8.
Pharmacol Rev ; 74(3): 506-551, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710135

RESUMO

Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal ß -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.


Assuntos
Carnitina , Resistência à Insulina , Biomarcadores , Carnitina/análogos & derivados , Carnitina/química , Carnitina/metabolismo , Carnitina/uso terapêutico , Ácidos Graxos/metabolismo , Humanos , Resistência à Insulina/fisiologia
9.
Nucleic Acids Res ; 50(W1): W165-W174, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35610037

RESUMO

The CFM-ID 4.0 web server (https://cfmid.wishartlab.com) is an online tool for predicting, annotating and interpreting tandem mass (MS/MS) spectra of small molecules. It is specifically designed to assist researchers pursuing studies in metabolomics, exposomics and analytical chemistry. More specifically, CFM-ID 4.0 supports the: 1) prediction of electrospray ionization quadrupole time-of-flight tandem mass spectra (ESI-QTOF-MS/MS) for small molecules over multiple collision energies (10 eV, 20 eV, and 40 eV); 2) annotation of ESI-QTOF-MS/MS spectra given the structure of the compound; and 3) identification of a small molecule that generated a given ESI-QTOF-MS/MS spectrum at one or more collision energies. The CFM-ID 4.0 web server makes use of a substantially improved MS fragmentation algorithm, a much larger database of experimental and in silico predicted MS/MS spectra and improved scoring methods to offer more accurate MS/MS spectral prediction and MS/MS-based compound identification. Compared to earlier versions of CFM-ID, this new version has an MS/MS spectral prediction performance that is ∼22% better and a compound identification accuracy that is ∼35% better on a standard (CASMI 2016) testing dataset. CFM-ID 4.0 also features a neutral loss function that allows users to identify similar or substituent compounds where no match can be found using CFM-ID's regular MS/MS-to-compound identification utility. Finally, the CFM-ID 4.0 web server now offers a much more refined user interface that is easier to use, supports molecular formula identification (from MS/MS data), provides more interactively viewable data (including proposed fragment ion structures) and displays MS mirror plots for comparing predicted with observed MS/MS spectra. These improvements should make CFM-ID 4.0 much more useful to the community and should make small molecule identification much easier, faster, and more accurate.


Assuntos
Algoritmos , Metabolômica , Software , Espectrometria de Massas em Tandem , Computadores , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem/métodos , Internet
10.
Nucleic Acids Res ; 50(W1): W115-W123, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536252

RESUMO

BioTransformer 3.0 (https://biotransformer.ca) is a freely available web server that supports accurate, rapid and comprehensive in silico metabolism prediction. It combines machine learning approaches with a rule-based system to predict small-molecule metabolism in human tissues, the human gut as well as the external environment (soil and water microbiota). Simply stated, BioTransformer takes a molecular structure as input (SMILES or SDF) and outputs an interactively sortable table of the predicted metabolites or transformation products (SMILES, PNG images) along with the enzymes that are predicted to be responsible for those reactions and richly annotated downloadable files (CSV and JSON). The entire process typically takes less than a minute. Previous versions of BioTransformer focused exclusively on predicting the metabolism of xenobiotics (such as plant natural products, drugs, cosmetics and other synthetic compounds) using a limited number of pre-defined steps and somewhat limited rule-based methods. BioTransformer 3.0 uses much more sophisticated methods and incorporates new databases, new constraints and new prediction modules to not only more accurately predict the metabolic transformation products of exogenous xenobiotics but also the transformation products of endogenous metabolites, such as amino acids, peptides, carbohydrates, organic acids, and lipids. BioTransformer 3.0 can also support customized sequential combinations of these transformations along with multiple iterations to simulate multi-step human biotransformation events. Performance tests indicate that BioTransformer 3.0 is 40-50% more accurate, far less prone to combinatorial 'explosions' and much more comprehensive in terms of metabolite coverage/capabilities than previous versions of BioTransformer.


Assuntos
Biologia Computacional , Xenobióticos , Humanos , Biologia Computacional/métodos , Biotransformação , Bases de Dados Factuais , Estrutura Molecular , Xenobióticos/metabolismo
11.
Nucleic Acids Res ; 50(D1): D622-D631, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986597

RESUMO

The Human Metabolome Database or HMDB (https://hmdb.ca) has been providing comprehensive reference information about human metabolites and their associated biological, physiological and chemical properties since 2007. Over the past 15 years, the HMDB has grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in internet and computing technology. This year's update, HMDB 5.0, brings a number of important improvements and upgrades to the database. These should make the HMDB more useful and more appealing to a larger cross-section of users. In particular, these improvements include: (i) a significant increase in the number of metabolite entries (from 114 100 to 217 920 compounds); (ii) enhancements to the quality and depth of metabolite descriptions; (iii) the addition of new structure, spectral and pathway visualization tools; (iv) the inclusion of many new and much more accurately predicted spectral data sets, including predicted NMR spectra, more accurately predicted MS spectra, predicted retention indices and predicted collision cross section data and (v) enhancements to the HMDB's search functions to facilitate better compound identification. Many other minor improvements and updates to the content, the interface, and general performance of the HMDB website have also been made. Overall, we believe these upgrades and updates should greatly enhance the HMDB's ease of use and its potential applications not only in human metabolomics but also in exposomics, lipidomics, nutritional science, biochemistry and clinical chemistry.


Assuntos
Bases de Dados Genéticas , Metaboloma/genética , Metabolômica/classificação , Humanos , Lipidômica/classificação , Espectrometria de Massas , Interface Usuário-Computador
12.
Nucleic Acids Res ; 50(D1): D665-D677, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791429

RESUMO

The Natural Products Magnetic Resonance Database (NP-MRD) is a comprehensive, freely available electronic resource for the deposition, distribution, searching and retrieval of nuclear magnetic resonance (NMR) data on natural products, metabolites and other biologically derived chemicals. NMR spectroscopy has long been viewed as the 'gold standard' for the structure determination of novel natural products and novel metabolites. NMR is also widely used in natural product dereplication and the characterization of biofluid mixtures (metabolomics). All of these NMR applications require large collections of high quality, well-annotated, referential NMR spectra of pure compounds. Unfortunately, referential NMR spectral collections for natural products are quite limited. It is because of the critical need for dedicated, open access natural product NMR resources that the NP-MRD was funded by the National Institute of Health (NIH). Since its launch in 2020, the NP-MRD has grown quickly to become the world's largest repository for NMR data on natural products and other biological substances. It currently contains both structural and NMR data for nearly 41,000 natural product compounds from >7400 different living species. All structural, spectroscopic and descriptive data in the NP-MRD is interactively viewable, searchable and fully downloadable in multiple formats. Extensive hyperlinks to other databases of relevance are also provided. The NP-MRD also supports community deposition of NMR assignments and NMR spectra (1D and 2D) of natural products and related meta-data. The deposition system performs extensive data enrichment, automated data format conversion and spectral/assignment evaluation. Details of these database features, how they are implemented and plans for future upgrades are also provided. The NP-MRD is available at https://np-mrd.org.


Assuntos
Produtos Biológicos/química , Bases de Dados Factuais , Espectroscopia de Ressonância Magnética , Software , Produtos Biológicos/classificação , Internet
13.
Anal Chem ; 95(50): 18326-18334, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38048435

RESUMO

The market for illicit drugs has been reshaped by the emergence of more than 1100 new psychoactive substances (NPS) over the past decade, posing a major challenge to the forensic and toxicological laboratories tasked with detecting and identifying them. Tandem mass spectrometry (MS/MS) is the primary method used to screen for NPS within seized materials or biological samples. The most contemporary workflows necessitate labor-intensive and expensive MS/MS reference standards, which may not be available for recently emerged NPS on the illicit market. Here, we present NPS-MS, a deep learning method capable of accurately predicting the MS/MS spectra of known and hypothesized NPS from their chemical structures alone. NPS-MS is trained by transfer learning from a generic MS/MS prediction model on a large data set of MS/MS spectra. We show that this approach enables a more accurate identification of NPS from experimentally acquired MS/MS spectra than any existing method. We demonstrate the application of NPS-MS to identify a novel derivative of phencyclidine (PCP) within an unknown powder seized in Denmark without the use of any reference standards. We anticipate that NPS-MS will allow forensic laboratories to identify more rapidly both known and newly emerging NPS. NPS-MS is available as a web server at https://nps-ms.ca/, which provides MS/MS spectra prediction capabilities for given NPS compounds. Additionally, it offers MS/MS spectra identification against a vast database comprising approximately 8.7 million predicted NPS compounds from DarkNPS and 24.5 million predicted ESI-QToF-MS/MS spectra for these compounds.


Assuntos
Aprendizado Profundo , Drogas Ilícitas , Espectrometria de Massas em Tandem/métodos , Psicotrópicos/análise , Drogas Ilícitas/análise , Espectrometria de Massas por Ionização por Electrospray
14.
Nucleic Acids Res ; 49(D1): D1259-D1267, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33245771

RESUMO

MarkerDB is a freely available electronic database that attempts to consolidate information on all known clinical and a selected set of pre-clinical molecular biomarkers into a single resource. The database includes four major types of molecular biomarkers (chemical, protein, DNA [genetic] and karyotypic) and four biomarker categories (diagnostic, predictive, prognostic and exposure). MarkerDB provides information such as: biomarker names and synonyms, associated conditions or pathologies, detailed disease descriptions, detailed biomarker descriptions, biomarker specificity, sensitivity and ROC curves, standard reference values (for protein and chemical markers), variants (for SNP or genetic markers), sequence information (for genetic and protein markers), molecular structures (for protein and chemical markers), tissue or biofluid sources (for protein and chemical markers), chromosomal location and structure (for genetic and karyotype markers), clinical approval status and relevant literature references. Users can browse the data by conditions, condition categories, biomarker types, biomarker categories or search by sequence similarity through the advanced search function. Currently, the database contains 142 protein biomarkers, 1089 chemical biomarkers, 154 karyotype biomarkers and 26 374 genetic markers. These are categorized into 25 560 diagnostic biomarkers, 102 prognostic biomarkers, 265 exposure biomarkers and 6746 predictive biomarkers or biomarker panels. Collectively, these markers can be used to detect, monitor or predict 670 specific human conditions which are grouped into 27 broad condition categories. MarkerDB is available at https://markerdb.ca.


Assuntos
Biomarcadores/metabolismo , Bases de Dados Factuais , Doença/genética , Marcadores Genéticos , Proteínas/genética , Aberrações Cromossômicas , Doença/classificação , Humanos , Internet , Cariotipagem , Valor Preditivo dos Testes , Prognóstico , Proteínas/metabolismo , Curva ROC , Software
15.
Magn Reson Chem ; 61(12): 681-704, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37265034

RESUMO

Nuclear magnetic resonance (NMR) spectral analysis of biofluids can be a time-consuming process, requiring the expertise of a trained operator. With NMR becoming increasingly popular in the field of metabolomics, there is a growing need to change this paradigm and to automate the process. Here we introduce MagMet, an online web server, that automates the processing and quantification of 1D 1 H NMR spectra from biofluids-specifically, human serum/plasma metabolites, including those associated with inborn errors of metabolism (IEM). MagMet uses a highly efficient data processing procedure that performs automatic Fourier Transformation, phase correction, baseline optimization, chemical shift referencing, water signal removal, and peak picking/peak alignment. MagMet then uses the peak positions, linewidth information, and J-couplings from its own specially prepared standard metabolite reference spectral NMR library of 85 serum/plasma compounds to identify and quantify compounds from experimentally acquired NMR spectra of serum/plasma. MagMet employs linewidth adjustment for more consistent quantification of metabolites from higher field instruments and incorporates a highly efficient data processing procedure for more rapid and accurate detection and quantification of metabolites. This optimized algorithm allows the MagMet webserver to quickly detect and quantify 58 serum/plasma metabolites in 2.6 min per spectrum (when processing a dataset of 50-100 spectra). MagMet's performance was also assessed using spectra collected from defined mixtures (simulating other biofluids), with >100 previously measured plasma spectra, and from spiked serum/plasma samples simulating known IEMs. In all cases, MagMet performed with precision and accuracy matching the performance of human spectral profiling experts. MagMet is available at http://magmet.ca.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Soro , Algoritmos
16.
Nucleic Acids Res ; 48(D1): D470-D478, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31602464

RESUMO

PathBank (www.pathbank.org) is a new, comprehensive, visually rich pathway database containing more than 110 000 machine-readable pathways found in 10 model organisms (Homo sapiens, Bos taurus, Rattus norvegicus, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, Escherichia coli and Pseudomonas aeruginosa). PathBank aims to provide a pathway for every protein and a map for every metabolite. This resource is designed specifically to support pathway elucidation and pathway discovery in transcriptomics, proteomics, metabolomics and systems biology. It provides detailed, fully searchable, hyperlinked diagrams of metabolic, metabolite signaling, protein signaling, disease, drug and physiological pathways. All PathBank pathways include information on the relevant organs, organelles, subcellular compartments, cofactors, molecular locations, chemical structures and protein quaternary structures. Each small molecule is hyperlinked to the rich data contained in public chemical databases such as HMDB or DrugBank and each protein or enzyme complex is hyperlinked to UniProt. All PathBank pathways are accompanied with references and detailed descriptions which provide an overview of the pathway, condition or processes depicted in each diagram. Every PathBank pathway is downloadable in several machine-readable and image formats including BioPAX, SBML, PWML, SBGN, RXN, PNG and SVG. PathBank also supports community annotations and submissions through the web-based PathWhiz pathway illustrator. The vast majority of PathBank's pathways (>95%) are not found in any other public pathway database.


Assuntos
Bases de Dados Factuais , Genômica/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Software , Animais , Arabidopsis , Caenorhabditis elegans , Bovinos , Drosophila , Humanos , Camundongos , Ratos , Saccharomyces cerevisiae
17.
Metabolites ; 14(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38248844

RESUMO

Maternal pathological conditions such as infections and chronic diseases, along with unexpected events during labor, can lead to life-threatening perinatal outcomes. These outcomes can have irreversible consequences throughout an individual's entire life. Urinary metabolomics can provide valuable insights into early physiological adaptations in healthy newborns, as well as metabolic disturbances in premature infants or infants with birth complications. In the present study, we measured 180 metabolites and metabolite ratios in the urine of 13 healthy (hospital-discharged) and 38 critically ill newborns (admitted to the neonatal intensive care unit (NICU)). We used an in-house-developed targeted tandem mass spectrometry (MS/MS)-based metabolomic assay (TMIC Mega) combining liquid chromatography (LC-MS/MS) and flow injection analysis (FIA-MS/MS) to quantitatively analyze up to 26 classes of compounds. Average urinary concentrations (and ranges) for 167 different metabolites from 38 critically ill NICU newborns during their first 24 h of life were determined. Similar sets of urinary values were determined for the 13 healthy newborns. These reference data have been uploaded to the Human Metabolome Database. Urinary concentrations and ranges of 37 metabolites are reported for the first time for newborns. Significant differences were found in the urinary levels of 44 metabolites between healthy newborns and those admitted at the NICU. Metabolites such as acylcarnitines, amino acids and derivatives, biogenic amines, sugars, and organic acids are dysregulated in newborns with bronchopulmonary dysplasia (BPD), asphyxia, or newborns exposed to SARS-CoV-2 during the intrauterine period. Urine can serve as a valuable source of information for understanding metabolic alterations associated with life-threatening perinatal outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA