Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 607(7919): 555-562, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483403

RESUMO

At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals1,2. However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife3,4. In some cases, this will facilitate zoonotic spillover-a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal-virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 °C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming.


Assuntos
Mudança Climática , Mamíferos , Zoonoses Virais , Vírus , Migração Animal , Animais , Biodiversidade , Quirópteros/virologia , Mudança Climática/estatística & dados numéricos , Monitoramento Ambiental , Humanos , Mamíferos/classificação , Mamíferos/virologia , Filogeografia , Medição de Risco , Clima Tropical , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Vírus/isolamento & purificação
2.
Proc Biol Sci ; 291(2018): 20232823, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38444339

RESUMO

Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.


Assuntos
Quirópteros , Humanos , Animais , Gado
3.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33822740

RESUMO

The death toll and economic loss resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are stark reminders that we are vulnerable to zoonotic viral threats. Strategies are needed to identify and characterize animal viruses that pose the greatest risk of spillover and spread in humans and inform public health interventions. Using expert opinion and scientific evidence, we identified host, viral, and environmental risk factors contributing to zoonotic virus spillover and spread in humans. We then developed a risk ranking framework and interactive web tool, SpillOver, that estimates a risk score for wildlife-origin viruses, creating a comparative risk assessment of viruses with uncharacterized zoonotic spillover potential alongside those already known to be zoonotic. Using data from testing 509,721 samples from 74,635 animals as part of a virus discovery project and public records of virus detections around the world, we ranked the spillover potential of 887 wildlife viruses. Validating the risk assessment, the top 12 were known zoonotic viruses, including SARS-CoV-2. Several newly detected wildlife viruses ranked higher than known zoonotic viruses. Using a scientifically informed process, we capitalized on the recent wealth of virus discovery data to systematically identify and prioritize targets for investigation. The publicly accessible SpillOver platform can be used by policy makers and health scientists to inform research and public health interventions for prevention and rapid control of disease outbreaks. SpillOver is a living, interactive database that can be refined over time to continue to improve the quality and public availability of information on viral threats to human health.


Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Pandemias , SARS-CoV-2 , Zoonoses , Animais , COVID-19/epidemiologia , COVID-19/transmissão , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/transmissão , Humanos , Zoonoses/epidemiologia , Zoonoses/transmissão
4.
Nature ; 546(7660): 646-650, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28636590

RESUMO

The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.


Assuntos
Especificidade de Hospedeiro , Mamíferos/virologia , Vírus/isolamento & purificação , Vírus/patogenicidade , Zoonoses/epidemiologia , Zoonoses/virologia , Animais , Biodiversidade , Interações Hospedeiro-Patógeno , Humanos
5.
Nature ; 548(7669): 612, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29411779

RESUMO

This corrects the article DOI: 10.1038/nature22975.

6.
Proc Natl Acad Sci U S A ; 117(46): 29190-29201, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139552

RESUMO

Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia-one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to bat-population turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysia-clade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus's range.


Assuntos
Quirópteros/virologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/transmissão , Infecções por Henipavirus/veterinária , Infecções por Henipavirus/virologia , Vírus Nipah/classificação , Vírus Nipah/genética , Animais , Ásia , Bangladesh/epidemiologia , Surtos de Doenças , Feminino , Especificidade de Hospedeiro , Humanos , Imunidade , Masculino , Modelos Biológicos , Epidemiologia Molecular , Vírus Nipah/imunologia , Filogenia , Zoonoses/epidemiologia , Zoonoses/imunologia , Zoonoses/transmissão , Zoonoses/virologia
7.
Parasitol Res ; 122(9): 2101-2107, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37389690

RESUMO

The global epidemiological significance of bats and their blood-sucking ectoparasites is increasingly recognized. However, relevant data are scarce from Pakistan where the Palearctic and Oriental zoogeographic regions meet. In this study, 200 bats belonging to five species were examined for the presence of ectoparasites in Pakistan. Bat flies were found only on Leschenault's fruit bat (Rousettus leschenaultii). The prevalence of infestation did not correlate with habitat type and host traits including age, reproductive status, and sex. All bat flies represented the same Eucampsipoda species which was shown to be morphologically different from all species of its genus with known south Asian distribution and belonged to a separate phylogenetic group. These results highlight the existence of a hitherto undescribed bat fly species in southern Asia, which is not shared by the fruit bat species (R. leschenaultii) and insectivorous ones (e.g., Rhinopoma microphyllum) thus probably playing a role only in intraspecific transmission of pathogens.


Assuntos
Quirópteros , Dípteros , Animais , Filogenia , Ásia Meridional , Paquistão
8.
PLoS Pathog ; 16(9): e1008758, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32881980

RESUMO

The COVID-19 pandemic highlights the substantial public health, economic, and societal consequences of virus spillover from a wildlife reservoir. Widespread human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of challenges when considering viral spillover from people to naïve wildlife and other animal populations. The establishment of new wildlife reservoirs for SARS-CoV-2 would further complicate public health control measures and could lead to wildlife health and conservation impacts. Given the likely bat origin of SARS-CoV-2 and related beta-coronaviruses (ß-CoVs), free-ranging bats are a key group of concern for spillover from humans back to wildlife. Here, we review the diversity and natural host range of ß-CoVs in bats and examine the risk of humans inadvertently infecting free-ranging bats with SARS-CoV-2. Our review of the global distribution and host range of ß-CoV evolutionary lineages suggests that 40+ species of temperate-zone North American bats could be immunologically naïve and susceptible to infection by SARS-CoV-2. We highlight an urgent need to proactively connect the wellbeing of human and wildlife health during the current pandemic and to implement new tools to continue wildlife research while avoiding potentially severe health and conservation impacts of SARS-CoV-2 "spilling back" into free-ranging bat populations.


Assuntos
Animais Selvagens/virologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Animais , COVID-19 , Quirópteros/virologia , Genoma Viral/genética , Especificidade de Hospedeiro/fisiologia , Humanos , Pandemias , SARS-CoV-2
9.
BMC Infect Dis ; 22(1): 472, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578171

RESUMO

BACKGROUND: Interactions between humans and animals are the key elements of zoonotic spillover leading to zoonotic disease emergence. Research to understand the high-risk behaviors associated with disease transmission at the human-animal interface is limited, and few consider regional and local contexts. OBJECTIVE: This study employed an integrated behavioral-biological surveillance approach for the early detection of novel and known zoonotic viruses in potentially high-risk populations, in an effort to identify risk factors for spillover and to determine potential foci for risk-mitigation measures. METHOD: Participants were enrolled at two community-based sites (n = 472) in eastern and western Thailand and two hospital (clinical) sites (n = 206) in northeastern and central Thailand. A behavioral questionnaire was administered to understand participants' demographics, living conditions, health history, and animal-contact behaviors and attitudes. Biological specimens were tested for coronaviruses, filoviruses, flaviviruses, influenza viruses, and paramyxoviruses using pan (consensus) RNA Virus assays. RESULTS: Overall 61/678 (9%) of participants tested positive for the viral families screened which included influenza viruses (75%), paramyxoviruses (15%), human coronaviruses (3%), flaviviruses (3%), and enteroviruses (3%). The most salient predictors of reporting unusual symptoms (i.e., any illness or sickness that is not known or recognized in the community or diagnosed by medical providers) in the past year were having other household members who had unusual symptoms and being scratched or bitten by animals in the same year. Many participants reported raising and handling poultry (10.3% and 24.2%), swine (2%, 14.6%), and cattle (4.9%, 7.8%) and several participants also reported eating raw or undercooked meat of these animals (2.2%, 5.5%, 10.3% respectively). Twenty four participants (3.5%) reported handling bats or having bats in the house roof. Gender, age, and livelihood activities were shown to be significantly associated with participants' interactions with animals. Participants' knowledge of risks influenced their health-seeking behavior. CONCLUSION: The results suggest that there is a high level of interaction between humans, livestock, and wild animals in communities at sites we investigated in Thailand. This study highlights important differences among demographic and occupational risk factors as they relate to animal contact and zoonotic disease risk, which can be used by policymakers and local public health programs to build more effective surveillance strategies and behavior-focused interventions.


Assuntos
Doenças Transmissíveis Emergentes , Animais , Animais Selvagens , Bovinos , Doenças Transmissíveis Emergentes/epidemiologia , Humanos , Aves Domésticas , Suínos , Tailândia/epidemiologia , Zoonoses/epidemiologia
10.
Mol Ecol ; 29(5): 970-985, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31652377

RESUMO

The structure and connectivity of wildlife host populations may influence zoonotic disease dynamics, evolution and therefore spillover risk to people. Fruit bats in the genus Pteropus, or flying foxes, are the primary natural reservoir for henipaviruses-a group of emerging paramyxoviruses that threaten livestock and public health. In Bangladesh, Pteropus medius is the reservoir for Nipah virus-and viral spillover has led to human fatalities nearly every year since 2001. Here, we use mitochondrial DNA and nuclear microsatellite markers to measure the population structure, demographic history and phylogeography of P. medius in Bangladesh. We combine this with a phylogeographic analysis of all known Nipah virus sequences and strains currently available to better inform the dynamics, distribution and evolutionary history of Nipah virus. We show that P. medius is primarily panmictic, but combined analysis of microsatellite and morphological data shows evidence for differentiation of two populations in eastern Bangladesh, corresponding to a divergent strain of Nipah virus also found in bats from eastern Bangladesh. Our demographic analyses indicate that a large, expanding population of flying foxes has existed in Bangladesh since the Late Pleistocene, coinciding with human population expansion in South Asia, suggesting repeated historical spillover of Nipah virus likely occurred. We present the first evidence of mitochondrial introgression, or hybridization, between P. medius and flying fox species found in South-East Asia (P. vampyrus and P. hypomelanus), which may help to explain the distribution of Nipah virus strains across the region.


Assuntos
Quirópteros/genética , Quirópteros/virologia , Genética Populacional , Vírus Nipah/genética , Animais , Bangladesh , Quirópteros/classificação , DNA Mitocondrial/genética , Feminino , Masculino , Repetições de Microssatélites , Vírus Nipah/classificação , Filogeografia
11.
Am Nat ; 187(2): E53-64, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26807755

RESUMO

Emerging infectious diseases (EIDs), particularly zoonoses, represent a significant threat to global health. Emergence is often driven by anthropogenic activity (e.g., travel, land use change). Although disease emergence frameworks suggest multiple steps from initial zoonotic transmission to human-to-human spread, there have been few attempts to empirically model specific steps. We create a process-based framework to separate out components of individual emergence steps. We focus on early emergence and expand the first step, zoonotic transmission, into processes of generation of pathogen richness, transmission opportunity, and establishment, each with its own hypothesized drivers. Using this structure, we build a spatial empirical model of these drivers, taking bat viruses shared with humans as a case study. We show that drivers of both viral richness (host diversity and climatic variability) and transmission opportunity (human population density, bushmeat hunting, and livestock production) are associated with virus sharing between humans and bats. We also show spatial heterogeneity between the global patterns of these two processes, suggesting that high-priority locations for pathogen discovery and surveillance in wildlife may not necessarily coincide with those for public health intervention. Finally, we offer direction for future studies of zoonotic EIDs by highlighting the importance of the processes underlying their emergence.


Assuntos
Quirópteros , Doenças Transmissíveis Emergentes/epidemiologia , Viroses/epidemiologia , Zoonoses/epidemiologia , Criação de Animais Domésticos , Animais , Biodiversidade , Clima , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/virologia , Humanos , Modelos Biológicos , Densidade Demográfica , Viroses/transmissão , Viroses/virologia , Zoonoses/transmissão , Zoonoses/virologia
12.
Virol J ; 12: 57, 2015 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-25884446

RESUMO

BACKGROUND: Bats are reservoirs for a diverse range of coronaviruses (CoVs), including those closely related to human pathogens such as Severe Acute Respiratory Syndrome (SARS) CoV and Middle East Respiratory Syndrome CoV. There are approximately 139 bat species reported to date in Thailand, of which two are endemic species. Due to the zoonotic potential of CoVs, standardized surveillance efforts to characterize viral diversity in wildlife are imperative. FINDINGS: A total of 626 bats from 19 different bat species were individually sampled from 5 provinces in Eastern Thailand between 2008 and 2013 (84 fecal and 542 rectal swabs). Samples collected (either fresh feces or rectal swabs) were placed directly into RNA stabilization reagent, transported on ice within 24 hours and preserved at -80°C until further analysis. CoV RNA was detected in 47 specimens (7.6%), from 13 different bat species, using broadly reactive consensus PCR primers targeting the RNA-Dependent RNA Polymerase gene designed to detect all CoVs. Thirty seven alphacoronaviruses, nine lineage D betacoronaviruses, and one lineage B betacoronavirus (SARS-CoV related) were identified. Six new bat CoV reservoirs were identified in our study, namely Cynopterus sphinx, Taphozous melanopogon, Hipposideros lekaguli, Rhinolophus shameli, Scotophilus heathii and Megaderma lyra. CONCLUSIONS: CoVs from the same genetic lineage were found in different bat species roosting in similar or different locations. These data suggest that bat CoV lineages are not strictly concordant with their hosts. Our phylogenetic data indicates high diversity and a complex ecology of CoVs in bats sampled from specific areas in eastern regions of Thailand. Further characterization of additional CoV genes may be useful to better describe the CoV divergence.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/veterinária , Coronavirus/genética , Coronavirus/isolamento & purificação , Variação Genética , Animais , Coronavirus/classificação , Infecções por Coronavirus/virologia , Genoma Viral , Humanos , Dados de Sequência Molecular , Filogenia , Tailândia
13.
Virol J ; 12: 107, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26184657

RESUMO

BACKGROUND: In 2008-09, evidence of Reston ebolavirus (RESTV) infection was found in domestic pigs and pig workers in the Philippines. With species of bats having been shown to be the cryptic reservoir of filoviruses elsewhere, the Philippine government, in conjunction with the Food and Agriculture Organization of the United Nations, assembled a multi-disciplinary and multi-institutional team to investigate Philippine bats as the possible reservoir of RESTV. METHODS: The team undertook surveillance of bat populations at multiple locations during 2010 using both serology and molecular assays. RESULTS: A total of 464 bats from 21 species were sampled. We found both molecular and serologic evidence of RESTV infection in multiple bat species. RNA was detected with quantitative PCR (qPCR) in oropharyngeal swabs taken from Miniopterus schreibersii, with three samples yielding a product on conventional hemi-nested PCR whose sequences differed from a Philippine pig isolate by a single nucleotide. Uncorroborated qPCR detections may indicate RESTV nucleic acid in several additional bat species (M. australis, C. brachyotis and Ch. plicata). We also detected anti-RESTV antibodies in three bats (Acerodon jubatus) using both Western blot and ELISA. CONCLUSIONS: The findings suggest that ebolavirus infection is taxonomically widespread in Philippine bats, but the evident low prevalence and low viral load warrants expanded surveillance to elaborate the findings, and more broadly, to determine the taxonomic and geographic occurrence of ebolaviruses in bats in the region.


Assuntos
Quirópteros/virologia , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/veterinária , Animais , Anticorpos Antivirais/sangue , Análise por Conglomerados , Ensaio de Imunoadsorção Enzimática , Doença pelo Vírus Ebola/virologia , Orofaringe/virologia , Filipinas , Filogenia , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Homologia de Sequência
14.
Curr Top Microbiol Immunol ; 365: 101-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23117192

RESUMO

Wildlife are frequently a neglected component of One Health; however, the linkages between the health of wildlife and human, domestic animal, and environmental health are clear. The majority of emerging zoonotic diseases are linked to wildlife, primarily driven by anthropogenic land changes. Despite this risk, wildlife have important links to people as environmental indicators, food security and safety, and through human livelihoods. This chapter will describe these linkages and demonstrate the need to understand these linkages through targeted surveillance and understanding the ecology of wildlife diseases. While the management of wildlife diseases presents a significant challenge, such practices will greatly improve the health of people, domestic animals, wildlife and the environment.


Assuntos
Animais Selvagens , Doenças Transmissíveis Emergentes/transmissão , Zoonoses/transmissão , Animais , Doenças Transmissíveis Emergentes/prevenção & controle , Ecologia , Inocuidade dos Alimentos , Abastecimento de Alimentos , Humanos , Zoonoses/prevenção & controle
15.
bioRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464184

RESUMO

Understanding viral infection dynamics in wildlife hosts can help forecast zoonotic pathogen spillover and human disease risk. Bats are particularly important reservoirs of zoonotic viruses, including some of major public health concern such as Nipah virus, Hendra virus, and SARS-related coronaviruses. Previous work has suggested that metapopulation dynamics, seasonal reproductive patterns, and other bat life history characteristics might explain temporal variation in spillover of bat-associated viruses into people. Here, we analyze viral dynamics in free-ranging bat hosts, leveraging a multi-year, global-scale viral detection dataset that spans eight viral families and 96 bat species from 14 countries. We fit hierarchical Bayesian models that explicitly control for important sources of variation, including geographic region, specimen type, and testing protocols, while estimating the influence of reproductive status on viral detection in female bats. Our models revealed that late pregnancy had a negative effect on viral shedding across multiple data subsets, while lactation had a weaker influence that was inconsistent across data subsets. These results are unusual for mammalian hosts, but given recent findings that bats may have high individual viral loads and population-level prevalence due to dampening of antiviral immunity, we propose that it would be evolutionarily advantageous for pregnancy to either not further reduce immunity or actually increase the immune response, reducing viral load, shedding, and risk of fetal infection. This novel hypothesis would be valuable to test given its potential to help monitor, predict, and manage viral spillover risk from bats.

16.
Biodivers Data J ; 12: e132199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39210959

RESUMO

Background: Western Asia represents a mixing pot of diverse bat species with distributions spanning across other geographic regions. Yet, relative to other regions, there is a significant gap in coordinated bat research in Western Asia, thereby resulting in a relatively limited number of curated occurrence records. New information: The Western Asia Bat Research Network (WAB-Net) project was created to strengthen research capacity and knowledge of the diversity and distribution of bat species in a little-studied region, as well as to collect data to characterise the diversity and prevalence of coronaviruses in diverse bat species. Over a four-year period (2018-2022), we documented 4,278 individual records for 41 bat species using a cross-sectional survey approach at 50 sites in seven Western Asian countries, specifically Armenia, Azerbaijan, Georgia, Jordan, Oman, Pakistan and Turkiye. At each site, we captured, on average, 90 individual bats (range: 9-131) over multiple consecutive nights and used standardised methods to collect demographic and morphological data from captured individuals. We additionally completed a systematic evaluation of environmental characterisation and human-bat interactions at all 50 sites. Here, we report individual occurrence records and site conditions from this multi-country, multi-year sampling effort.

17.
Emerg Infect Dis ; 19(5): 743-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23647732

RESUMO

We analyzed a database of mammal-virus associations to ask whether surveillance targeting diseased animals is the best strategy to identify potentially zoonotic pathogens. Although a mixed healthy and diseased animal surveillance strategy is generally best, surveillance of apparently healthy animals would likely maximize zoonotic virus discovery potential for bats and rodents.


Assuntos
Quirópteros/virologia , Doenças Transmissíveis Emergentes/veterinária , Roedores/virologia , Viroses/veterinária , Vírus/isolamento & purificação , Zoonoses/epidemiologia , Animais , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Monitoramento Epidemiológico , Saúde Global , Interações Hospedeiro-Patógeno , Humanos , Modelos Estatísticos , Viroses/epidemiologia , Viroses/virologia , Zoonoses/virologia
18.
Emerg Infect Dis ; 19(11): 1819-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24206838

RESUMO

The source of human infection with Middle East respiratory syndrome coronavirus remains unknown. Molecular investigation indicated that bats in Saudi Arabia are infected with several alphacoronaviruses and betacoronaviruses. Virus from 1 bat showed 100% nucleotide identity to virus from the human index case-patient. Bats might play a role in human infection.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Coronavirus/genética , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/transmissão , Animais , Coronavirus/classificação , Genes Virais , Geografia , Humanos , Dados de Sequência Molecular , Filogenia , Arábia Saudita/epidemiologia
19.
Emerg Infect Dis ; 19(2): 270-3, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23343532

RESUMO

To determine geographic range for Ebola virus, we tested 276 bats in Bangladesh. Five (3.5%) bats were positive for antibodies against Ebola Zaire and Reston viruses; no virus was detected by PCR. These bats might be a reservoir for Ebola or Ebola-like viruses, and extend the range of filoviruses to mainland Asia.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola/veterinária , Animais , Anticorpos Antivirais/sangue , Bangladesh/epidemiologia , Quirópteros/imunologia , Quirópteros/virologia , Feminino , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/imunologia , Masculino
20.
J Ethnobiol Ethnomed ; 18(1): 43, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659249

RESUMO

BACKGROUND: Fruit bats play an important role in pollination and seed dispersal, and their conservation is important to maintain the productivity of some crops and natural ecosystems. The objective of this study was to investigate the knowledge, attitudes, and perception of fruit bats by orchard farmers and agricultural communities in Pakistan. METHODS: The present survey was conducted in two districts (i.e. Sheikhupura and Malakand districts) within Punjab and Khyber Pakhtunkhwa provinces based on the higher number of fruit growing areas and bat roosting sites. A total of 200 (100 per district) close-ended questionnaires with 53 questions were administered to randomly selected respondents within the selected communities associated with fruit orchards, including orchard owners, laborers, and members of the surrounding community. Each questionnaire was divided into seven sections (i.e., demographic information, environmental and public health effects of bats, knowledge about bats, perception and control of bats, non-lethal methods adopted to control bats, and different myths about bats). RESULTS: A majority of respondents (59%, n = 118) mis-classified bats as birds instead of mammals despite more than 84% reporting that they have observed bats. Nearly 71.5% of orchard farmers perceived that their fruits are contaminated by bats during consumption, and a majority believe that bats destroy orchards (62.5%) and are responsible for spreading disease. Mythology about bats was ambiguous, as 49% of those surveyed did not perceived bats to bring good luck (49%), and 50% did not perceived them to be bad omens either. Most respondents have never killed a bat (68%) nor would they kill a bat if given the opportunity (95%). Regarding the control of bats, the greatest percentage of respondents strongly disagree with shooting bats (36%) and strongly agree with leaving bats alone (42.5%). CONCLUSIONS: This study provides a better understanding of the sociodemographic factors associated with knowledge, attitude and perception of bats from fruit orchard owners, labourers and local people. We recommend educational interventions for targeted groups in the community, highlighting the ecosystem services and importance of bat conservation to improve people's current knowledge regarding the role of bats and reduce direct persecution against bats.


Assuntos
Quirópteros , Animais , Atitude , Ecossistema , Fazendeiros , Humanos , Paquistão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA