Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 220, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532321

RESUMO

BACKGROUND: Riboflavin is the precursor of several cofactors essential for normal physical and cognitive development, but only plants and some microorganisms can produce it. Humans thus rely on their dietary intake, which at a global level is mainly constituted by cereals (> 50%). Understanding the riboflavin biosynthesis players is key for advancing our knowledge on this essential pathway and can hold promise for biofortification strategies in major crop species. In some bacteria and in Arabidopsis, it is known that RibA1 is a bifunctional protein with distinct GTP cyclohydrolase II (GTPCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS) domains. Arabidopsis harbors three RibA isoforms, but only one retained its bifunctionality. In rice, however, the identification and characterization of RibA has not yet been described. RESULTS: Through mathematical kinetic modeling, we identified RibA as the rate-limiting step of riboflavin pathway and by bioinformatic analysis we confirmed that rice RibA proteins carry both domains, DHBPS and GTPCHII. Phylogenetic analysis revealed that OsRibA isoforms 1 and 2 are similar to Arabidopsis bifunctional RibA1. Heterologous expression of OsRibA1 completely restored the growth of the rib3∆ yeast mutant, lacking DHBPS expression, while causing a 60% growth improvement of the rib1∆ mutant, lacking GTPCHII activity. Regarding OsRibA2, its heterologous expression fully complemented GTPCHII activity, and improved rib3∆ growth by 30%. In vitro activity assays confirmed that both OsRibA1 and OsRibA2 proteins carry GTPCHII/DHBPS activities, but that OsRibA1 has higher DHBPS activity. The overexpression of OsRibA1 in rice callus resulted in a 28% increase in riboflavin content. CONCLUSIONS: Our study elucidates the critical role of RibA in rice riboflavin biosynthesis pathway, establishing it as the rate-limiting step in the pathway. By identifying and characterizing OsRibA1 and OsRibA2, showcasing their GTPCHII and DHBPS activities, we have advanced the understanding of riboflavin biosynthesis in this staple crop. We further demonstrated that OsRibA1 overexpression in rice callus increases its riboflavin content, providing supporting information for bioengineering efforts.


Assuntos
Arabidopsis , Oryza , Humanos , Riboflavina/genética , Riboflavina/metabolismo , Sequência de Aminoácidos , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Oryza/metabolismo , Arabidopsis/metabolismo , Filogenia , Isoformas de Proteínas/metabolismo
2.
Plant J ; 110(3): 899-915, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35106861

RESUMO

The phellem is a specialized boundary tissue providing the first line of defense against abiotic and biotic stresses in organs undergoing secondary growth. Phellem cells undergo several differentiation steps, which include cell wall suberization, cell expansion, and programmed cell death. Yet, the molecular players acting particularly in phellem cell differentiation remain poorly described, particularly in the widely used model plant Arabidopsis thaliana. Using specific marker lines we followed the onset and progression of phellem differentiation in A. thaliana roots and further targeted the translatome of newly developed phellem cells using translating ribosome affinity purification followed by mRNA sequencing (TRAP-SEQ). We showed that phellem suberization is initiated early after phellogen (cork cambium) division. The specific translational landscape was organized in three main domains related to energy production, synthesis and transport of cell wall components, and response to stimulus. Novel players in phellem differentiation related to suberin monomer transport and assembly as well as novel transcription regulators were identified. This strategy provided an unprecedented resolution of the translatome of developing phellem cells, giving a detailed and specific view on the molecular mechanisms acting on cell differentiation in periderm tissues of the model plant Arabidopsis.


Assuntos
Arabidopsis , Arabidopsis/genética , Câmbio/genética , Parede Celular , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Fatores de Transcrição/genética
3.
J Exp Bot ; 74(1): 336-351, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36269314

RESUMO

Jatropha curcas is a drought-tolerant plant that maintains its photosynthetic pigments under prolonged drought, and quickly regains its photosynthetic capacity when water is available. It has been reported that drought stress leads to increased thermal dissipation in PSII, but that of PSI has been barely investigated, perhaps due to technical limitations in measuring the PSI absolute quantum yield. In this study, we combined biochemical analysis and spectroscopic measurements using an integrating sphere, and verified that the quantum yields of both photosystems are temporarily down-regulated under drought. We found that the decrease in the quantum yield of PSII was accompanied by a decrease in the core complexes of PSII while light-harvesting complexes are maintained under drought. In addition, in drought-treated plants, we observed a decrease in the absolute quantum yield of PSI as compared with the well-watered control, while the amount of PSI did not change, indicating that non-photochemical quenching occurs in PSI. The down-regulation of both photosystems was quickly lifted in a few days upon re-watering. Our results indicate, that in J. curcas under drought, the down-regulation of both PSII and PSI quantum yield protects the photosynthetic machinery from uncontrolled photodamage.


Assuntos
Jatropha , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Jatropha/metabolismo , Transporte de Elétrons/fisiologia , Secas , Regulação para Baixo , Folhas de Planta/metabolismo , Fotossíntese/fisiologia , Água/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila
4.
New Phytol ; 234(2): 748-763, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35037254

RESUMO

Thiamin (or thiamine), known as vitamin B1, represents an indispensable component of human diets, being pivotal in energy metabolism. Thiamin research depends on adequate vitamin quantification in plant tissues. A recently developed quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is able to assess the level of thiamin, its phosphorylated entities and its biosynthetic intermediates in the model plant Arabidopsis thaliana, as well as in rice. However, their implementation requires expensive equipment and substantial technical expertise. Microbiological assays can be useful in deter-mining metabolite levels in plant material and provide an affordable alternative to MS-based analysis. Here, we evaluate, by comparison to the LC-MS/MS reference method, the potential of a carefully chosen panel of yeast assays to estimate levels of total vitamin B1, as well as its biosynthetic intermediates pyrimidine and thiazole in Arabidopsis samples. The examined panel of Saccharomyces cerevisiae mutants was, when implemented in microbiological assays, capable of correctly assigning a series of wild-type and thiamin biofortified Arabidopsis plant samples. The assays provide a readily applicable method allowing rapid screening of vitamin B1 (and its biosynthetic intermediates) content in plant material, which is particularly useful in metabolic engineering approaches and in germplasm screening across or within species.


Assuntos
Arabidopsis , Tiamina , Arabidopsis/metabolismo , Cromatografia Líquida , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem/métodos , Tiamina/química , Tiamina/metabolismo
5.
J Exp Bot ; 72(12): 4190-4201, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33787877

RESUMO

Calcium-dependent protein kinases (CDPKs) play essential roles in plant development and stress responses. CDPKs have a conserved kinase domain, followed by an auto-inhibitory junction connected to the calmodulin-like domain that binds Ca2+. These structural features allow CDPKs to decode the dynamic changes in cytoplasmic Ca2+ concentrations triggered by hormones and by biotic and abiotic stresses. In response to these signals, CDPKs phosphorylate downstream protein targets to regulate growth and stress responses according to the environmental and developmental circumstances. The latest advances in our understanding of the metabolic, transcriptional, and protein-protein interaction networks involving CDPKs suggest that they have a direct influence on plant carbon/nitrogen (C/N) balance. In this review, we discuss how CDPKs could be key signaling nodes connecting stress responses with metabolic homeostasis, and acting together with the sugar and nutrient signaling hubs SnRK1, HXK1, and TOR to improve plant fitness.


Assuntos
Carbono , Proteínas Quinases , Nitrogênio , Desenvolvimento Vegetal
6.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 231-246, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29100789

RESUMO

Plant calcium-dependent protein kinases (CDPKs) are key proteins implicated in calcium-mediated signaling pathways of a wide range of biological events in the organism. The action of each particular CDPK is strictly regulated by many mechanisms in order to ensure an accurate signal translation and the activation of the adequate response processes. In this work, we investigated the regulation of a CDPK involved in rice cold stress response, OsCPK17, to better understand its mode of action. We identified two new alternative splicing (AS) mRNA forms of OsCPK17 encoding truncated versions of the protein, missing the CDPK activation domain. We analyzed the expression patterns of all AS variants in rice tissues and examined their subcellular localization in onion epidermal cells. The results indicate that the AS of OsCPK17 putatively originates truncated forms of the protein with distinct functions, and different subcellular and tissue distributions. Additionally, we addressed the regulation of OsCPK17 by post-translational modifications in several in vitro experiments. Our analysis indicated that OsCPK17 activity depends on its structural rearrangement induced by calcium binding, and that the protein can be autophosphorylated. The identified phosphorylation sites mostly populate the OsCPK17 N-terminal domain. Exceptions are phosphosites T107 and S136 in the kinase domain and S558 in the C-terminal domain. These phosphosites seem conserved in CDPKs and may reflect a common regulatory mechanism for this protein family.


Assuntos
Processamento Alternativo/fisiologia , Proteínas e Peptídeos de Choque Frio , Oryza , Proteínas de Plantas , Proteínas Quinases , Cálcio/metabolismo , Proteínas e Peptídeos de Choque Frio/química , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
7.
BMC Plant Biol ; 18(1): 349, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541427

RESUMO

BACKGROUND: SUMOylation is an essential eukaryotic post-translation modification that, in plants, regulates numerous cellular processes, ranging from seed development to stress response. Using rice as a model crop plant, we searched for potential regulatory points that may influence the activity of the rice SUMOylation machinery genes. RESULTS: We analyzed the presence of putative cis-acting regulatory elements (CREs) within the promoter regions of the rice SUMOylation machinery genes and found CREs related to different cellular processes, including hormone signaling. We confirmed that the transcript levels of genes involved in target-SUMOylation, containing ABA- and GA-related CREs, are responsive to treatments with these hormones. Transcriptional analysis in Nipponbare (spp. japonica) and LC-93-4 (spp. indica), showed that the transcript levels of all studied genes are maintained in the two subspecies, under normal growth. OsSUMO3 is an exceptional case since it is expressed at low levels or is not detectable at all in LC-93-4 roots and shoots, respectively. We revealed post-transcriptional regulation by alternative splicing (AS) for all genes studied, except for SUMO coding genes, OsSIZ2, OsOTS3, and OsELS2. Some AS forms have the potential to alter protein domains and catalytic centers. We also performed the molecular and phenotypic characterization of T-DNA insertion lines of some of the genes under study. Knockouts of OsFUG1 and OsELS1 showed increased SUMOylation levels and non-overlapping phenotypes. The fug1 line showed a dwarf phenotype, and significant defects in fertility, seed weight, and panicle architecture, while the els1 line showed early flowering and decreased plant height. We suggest that OsELS1 is an ortholog of AtEsd4, which was also supported by our phylogenetic analysis. CONCLUSIONS: Overall, we provide a comprehensive analysis of the rice SUMOylation machinery and discuss possible effects of the regulation of these genes at the transcriptional and post-transcriptional level. We also contribute to the characterization of two rice SUMO proteases, OsELS1 and OsFUG1.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Sumoilação , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Oryza/enzimologia , Oryza/genética , Peptídeo Hidrolases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteína SUMO-1/genética , Sumoilação/genética
8.
Mol Genet Genomics ; 293(2): 417-433, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29143866

RESUMO

Cynara cardunculus: L. represents a natural source of terpenic compounds, with the predominant molecule being cynaropicrin. Cynaropicrin is gaining interest since it has been correlated to anti-hyperlipidaemia, antispasmodic and cytotoxicity activity against leukocyte cancer cells. The objective of this work was to screen a collection of C. cardunculus, from different origins, for new allelic variants in germacrene A synthase (GAS) gene involved in the cynaropicrin biosynthesis and correlate them with improved cynaropicrin content and biological activities. Using high-resolution melting, nine haplotypes were identified. The putative impact of the identified allelic variants in GAS protein was evaluated by bioinformatic tools and polymorphisms that putatively lead to protein conformational changes were described. Additionally, cynaropicrin and main pentacyclic triterpenes contents, and antithrombin, antimicrobial and antiproliferative activities were also determined in C. cardunculus leaf lipophilic-derived extracts. In this work we identified allelic variants with putative impact on GAS protein, which are significantly associated with cynaropicrin content and antiproliferative activity. The results obtained suggest that the identified polymorphisms should be explored as putative genetic markers correlated with biological properties in Cynara cardunculus.


Assuntos
Alquil e Aril Transferases/genética , Cynara/genética , Haplótipos , Lactonas/metabolismo , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cynara/enzimologia , Cynara/metabolismo , Frequência do Gene , Humanos , Lactonas/farmacologia , Testes de Sensibilidade Microbiana , Filogenia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Sesquiterpenos/farmacologia , Triterpenos/metabolismo
9.
BMC Genomics ; 18(1): 183, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28212611

RESUMO

BACKGROUND: Cynara cardunculus L. offers a natural source of phenolic compounds with the predominant molecule being chlorogenic acid. Chlorogenic acid is gaining interest due to its involvement in various biological properties such as, antibacterial, antifungal, antioxidant, hepatoprotective, and anticarcinogenic activities. RESULTS: In this work we screened a Cynara cardunculus collection for new allelic variants in key genes involved in the chlorogenic acid biosynthesis pathway. The target genes encode p-coumaroyl ester 3'-hydroxylase (C3'H) and hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase (HQT), both participating in the synthesis of chlorogenic acid. Using high-resolution melting, the C3'H gene proved to be highly conserved with only 4 haplotypes while, for HQT, 17 haplotypes were identified de novo. The putative influence of the identified polymorphisms in C3'H and HQT proteins was further evaluated using bioinformatics tools. We could identify some polymorphisms that may lead to protein conformational changes. Chlorogenic acid content, antioxidant and antithrombin activities were also evaluated in Cc leaf extracts and an association analysis was performed to assess a putative correlation between these traits and the identified polymorphisms. CONCLUSION: In this work we identified allelic variants with putative impact on C3'H and HQT proteins which are significantly associated with chlorogenic acid content and antioxidant activity. Further study of these alleles should be explored to assess putative relevance as genetic markers correlating with Cynara cardunculus biological properties with further confirmation by functional analysis.


Assuntos
Cynara/genética , Cynara/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Propanóis/metabolismo , Haplótipos , Fenóis/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
10.
Plant Mol Biol ; 93(1-2): 61-77, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27766460

RESUMO

KEY MESSAGE: This manuscript reports the identification and characterization of five transcription factors binding to the promoter of OsNHX1 in a salt stress tolerant rice genotype (Hasawi). Although NHX1 encoding genes are known to be highly regulated at the transcription level by different abiotic stresses, namely salt and drought stress, until now only one transcription factor (TF) binding to its promoter has been reported. In order to unveil the TFs regulating NHX1 gene expression, which is known to be highly induced under salt stress, we have used a Y1H system to screen a salt induced rice cDNA expression library from Hasawi. This approach allowed us to identify five TFs belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) binding to the OsNHX1 gene promoter. We have also shown that these TFs act either as transcriptional activators (OsPCF2, OsNIN-like4) or repressors (OsCPP5, OsNIN-like2) and their encoding genes are differentially regulated by salt and PEG-induced drought stress in two rice genotypes, Nipponbare (salt-sensitive) and Hasawi (salt-tolerant). The transactivation activity of OsNIN-like3 was not possible to determine. Increased soil salinity has a direct impact on the reduction of plant growth and crop yield and it is therefore fundamental to understand the molecular mechanisms underlying gene expression regulation under adverse environmental conditions. OsNHX1 is the most abundant K+-Na+/H+ antiporter localized in the tonoplast and its gene expression is induced by salt, drought and ABA. To investigate how OsNHX1 is transcriptionally regulated in response to salt stress in a salt-tolerant rice genotype (Hasawi), a salt-stress-induced cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsNHX1 promoter as bait. Five transcription factors (TFs) belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) were identified as binding to OsNHX1 promoter. Transactivation activity assays performed in Arabidopsis and rice protoplasts showed that OsPCF2 and OsNIN-like4 are activators of the OsNHX1 gene expression, while OsCPP5 and OsNIN-like2 act as repressors. The transactivation activity of OsNIN-like3 needs to be further investigated. Gene expression studies showed that OsNHX1 transcript level is highly induced by salt and PEG-induced drought stress in both shoots and roots in both Nipponbare and Hasawi rice genotypes. Nevertheless, OsNHX1 seems to play a particular role in shoots in response to drought. Most of the TFs binding to OsNHX1 promoter showed a modest transcriptional regulation under stress conditions, however, in response to most of the conditions studied, the OsPCF2 was induced earlier than OsNHX1, indicating that OsPCF2 may activate OsNHX1 gene expression. In addition, although the OsNHX1 response to salt and PEG-induced drought stress in either shoots or roots was quite similar in both rice genotypes, the expression of OsPCF2 in roots under salt stress and the OsNIN-like4 in roots subjected to PEG was mainly up-regulated in Hasawi, indicating that these TFs may be associated with the salt and drought stress tolerance observed for this genotype.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Plantas Tolerantes a Sal/genética , Trocadores de Sódio-Hidrogênio/genética , Fatores de Transcrição/fisiologia , Adaptação Fisiológica , Genótipo , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/metabolismo , Estresse Fisiológico , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo
11.
Plant Cell Environ ; 40(7): 1197-1213, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28102545

RESUMO

Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here, we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analysing OsCPK17 knockout, silencing and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose-phosphate synthase OsSPS4 and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.


Assuntos
Resposta ao Choque Frio/fisiologia , Glucosiltransferases/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Fosforilação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
12.
Genet Mol Biol ; 40(1 suppl 1): 326-345, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28350038

RESUMO

Soil salinity is a major abiotic stress that results in considerable crop yield losses worldwide. However, some plant genotypes show a high tolerance to soil salinity, as they manage to maintain a high K+/Na+ ratio in the cytosol, in contrast to salt stress susceptible genotypes. Although, different plant genotypes show different salt tolerance mechanisms, they all rely on the regulation and function of K+ and Na+ transporters and H+ pumps, which generate the driving force for K+ and Na+ transport. In this review we will introduce salt stress responses in plants and summarize the current knowledge about the most important ion transporters that facilitate intra- and intercellular K+ and Na+ homeostasis in these organisms. We will describe and discuss the regulation and function of the H+-ATPases, H+-PPases, SOS1, HKTs, and NHXs, including the specific tissues where they work and their response to salt stress.

13.
Plant Physiol ; 169(3): 2275-87, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26381316

RESUMO

Plant roots can sense and respond to a wide diversity of mechanical stimuli, including touch and gravity. However, little is known about the signal transduction pathways involved in mechanical stimuli responses in rice (Oryza sativa). This work shows that rice root responses to mechanical stimuli involve the E3-ubiquitin ligase rice HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (OsHOS1), which mediates protein degradation through the proteasome complex. The morphological analysis of the roots in transgenic RNA interference::OsHOS1 and wild-type plants, exposed to a mechanical barrier, revealed that the OsHOS1 silencing plants keep a straight root in contrast to wild-type plants that exhibit root curling. Moreover, it was observed that the absence of root curling in response to touch can be reverted by jasmonic acid. The straight root phenotype of the RNA interference::OsHOS1 plants was correlated with a higher expression rice ROOT MEANDER CURLING (OsRMC), which encodes a receptor-like kinase characterized as a negative regulator of rice root curling mediated by jasmonic acid. Using the yeast two-hybrid system and bimolecular fluorescence complementation assays, we showed that OsHOS1 interacts with two ETHYLENE-RESPONSE FACTOR transcription factors, rice ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN1 (OsEREBP1) and rice OsEREBP2, known to regulate OsRMC gene expression. In addition, we showed that OsHOS1 affects the stability of both transcription factors in a proteasome-dependent way, suggesting that this E3-ubiquitin ligase targets OsEREBP1 and OsEREBP2 for degradation. Our results highlight the function of the proteasome in rice response to mechanical stimuli and in the integration of these signals, through hormonal regulation, into plant growth and developmental programs.


Assuntos
Regulação da Expressão Gênica de Plantas , Mecanotransdução Celular , Oryza/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Osmose , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Interferência de RNA , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/metabolismo
14.
J Exp Bot ; 67(3): 845-60, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26602946

RESUMO

Jatropha curcas, a multipurpose plant attracting a great deal of attention due to its high oil content and quality for biofuel, is recognized as a drought-tolerant species. However, this drought tolerance is still poorly characterized. This study aims to contribute to uncover the molecular background of this tolerance, using a combined approach of transcriptional profiling and morphophysiological characterization during a period of water-withholding (49 d) followed by rewatering (7 d). Morphophysiological measurements showed that J. curcas plants present different adaptation strategies to withstand moderate and severe drought. Therefore, RNA sequencing was performed for samples collected under moderate and severe stress followed by rewatering, for both roots and leaves. Jatropha curcas transcriptomic analysis revealed shoot- and root-specific adaptations across all investigated conditions, except under severe stress, when the dramatic transcriptomic reorganization at the root and shoot level surpassed organ specificity. These changes in gene expression were clearly shown by the down-regulation of genes involved in growth and water uptake, and up-regulation of genes related to osmotic adjustments and cellular homeostasis. However, organ-specific gene variations were also detected, such as strong up-regulation of abscisic acid synthesis in roots under moderate stress and of chlorophyll metabolism in leaves under severe stress. Functional validation further corroborated the differential expression of genes coding for enzymes involved in chlorophyll metabolism, which correlates with the metabolite content of this pathway.


Assuntos
Adaptação Fisiológica/genética , Secas , Perfilação da Expressão Gênica/métodos , Jatropha/genética , Jatropha/fisiologia , Redes e Vias Metabólicas/genética , Clorofila/metabolismo , Clorofila A , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Dessecação , Galactose/metabolismo , Gases/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Jatropha/crescimento & desenvolvimento , Modelos Biológicos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Estômatos de Plantas/fisiologia , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Amido/metabolismo , Estresse Fisiológico/genética , Água
15.
Proteomics ; 15(1): 124-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25283639

RESUMO

Identification of differences between genetically modified plants and their original counterparts plays a central role in risk assessment strategy. Our main goal was to better understand the relevance of transgene presence, genetic, and epigenetic changes induced by transgene insertion, and in vitro culture in putative unintended differences between a transgenic and its comparator. Thus, we have used multiplex fluorescence 2DE coupled with MS to characterize the proteome of three different rice lines (Oryza sativa L. ssp. japonica cv. Nipponbare): a control conventional line (C), an Agrobacterium-transformed transgenic line (Ta) and a negative segregant (NSb). We observed that Ta and NSb appeared identical (with only one spot differentially abundant--fold difference ≥ 1.5), contrasting with the control (49 spots with fold difference ≥ 1.5, in both Ta and NSb vs. control). Given that in vitro culture was the only event in common between Ta and NSb, we hypothesize that in vitro culture stress was the most relevant condition contributing for the observed proteomic differences. MS protein identification support our hypothesis, indicating that Ta and NSb lines adjusted their metabolic pathways and altered the abundance of several stress related proteins in order to cope with in vitro culture.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Redes e Vias Metabólicas , Oryza/química , Oryza/genética , Fotossíntese , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Proteômica , Estresse Fisiológico
16.
Physiol Plant ; 155(1): 43-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26082319

RESUMO

Increase in soil salinity levels is becoming a major cause of crop yield losses worldwide. Rice (Oryza sativa) is the most salt-sensitive cereal crop, and many studies have focused on rice salinity tolerance, but a global understanding of this crop's response to salinity is still lacking. We systematically analyzed phenotypic data previously collected for 56 rice genotypes to assess the extent to which rice uses three known salinity tolerance mechanisms: shoot-ion independent tolerance (or osmotic tolerance), ion exclusion, and tissue tolerance. In general, our analyses of different phenotypic traits agree with results of previous rice salinity tolerance studies. However, we also established that the three salinity tolerance mechanisms mentioned earlier appear among rice genotypes and that none of them is predominant. Against the pervasive view in the literature that the K(+) /Na(+) ratio is the most important trait in salinity tolerance, we found that the K(+) concentration was not significantly affected by salt stress in rice, which puts in question the importance of K(+) /Na(+) when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use our results together with an extensive literature research to highlight some issues commonly observed in salinity stress tolerance studies and to propose solutions for future experiments.


Assuntos
Oryza/genética , Salinidade , Tolerância ao Sal/genética , Solo/química , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genótipo , Modelos Genéticos , Oryza/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia
17.
Proteome Sci ; 12(1): 17, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24650160

RESUMO

BACKGROUND: Allergies are nearly always triggered by protein molecules and the majority of individuals with documented immunologic reactions to foods exhibit IgE hypersensitivity reactions. In this study we aimed to understand if natural differences, at proteomic level, between maize populations, may induce different IgE binding proteins profiles among maize-allergic individuals. We also intended to deepen our knowledge on maize IgE binding proteins. RESULTS: In order to accomplish this goal we have used proteomic tools (SDS-PAGE and 2-D gel electrophoresis followed by western blot) and tested plasma IgE reactivity from four maize-allergic individuals against four different protein fractions (albumins, globulins, glutelins and prolamins) of three different maize cultivars. We have observed that maize cultivars have different proteomes that result in different IgE binding proteins profiles when tested against plasma from maize-allergic individuals. We could identify 19 different maize IgE binding proteins, 11 of which were unknown to date. Moreover, we found that most (89.5%) of the 19 identified potential maize allergens could be related to plant stress. CONCLUSIONS: These results lead us to conclude that, within each species, plant allergenic potential varies with genotype. Moreover, considering the stress-related IgE binding proteins identified, we hypothesise that the environment, particularly stress conditions, may alter IgE binding protein profiles of plant components.

18.
Sci Rep ; 14(1): 13591, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866808

RESUMO

Thiamin is a vital nutrient that acts as a cofactor for several enzymes primarily localized in the mitochondria. These thiamin-dependent enzymes are involved in energy metabolism, nucleic acid biosynthesis, and antioxidant machinery. The enzyme HMP-P kinase/thiamin monophosphate synthase (TH1) holds a key position in thiamin biosynthesis, being responsible for the phosphorylation of HMP-P into HMP-PP and for the condensation of HMP-PP and HET-P to form TMP. Through mathematical kinetic model, we have identified TH1 as a critical player for thiamin biofortification in rice. We further focused on the functional characterization of OsTH1. Sequence and gene expression analysis, along with phylogenetic studies, provided insights into OsTH1 bifunctional features and evolution. The indispensable role of OsTH1 in thiamin biosynthesis was validated by heterologous expression of OsTH1 and successful complementation of yeast knock-out mutants impaired in thiamin production. We also proved that the sole OsTH1 overexpression in rice callus significantly improves B1 concentration, resulting in 50% increase in thiamin accumulation. Our study underscores the critical role of OsTH1 in thiamin biosynthesis, shedding light on its bifunctional nature and evolutionary significance. The significant enhancement of thiamin accumulation in rice callus upon OsTH1 overexpression constitutes evidence of its potential application in biofortification strategies.


Assuntos
Oryza , Proteínas de Plantas , Tiamina , Oryza/genética , Oryza/metabolismo , Tiamina/biossíntese , Tiamina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Filogenia , Regulação da Expressão Gênica de Plantas
19.
Plant Mol Biol ; 83(4-5): 351-63, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23780733

RESUMO

Plants can cope with adverse environmental conditions through the activation of stress response signalling pathways, in which the proteasome seems to play an important role. However, the mechanisms underlying the proteasome-mediated stress response in rice are still not fully understood. To address this issue, we have identified a rice E3-ubiquitin ligase, OsHOS1, and characterized its role in the modulation of the cold stress response. Using a RNA interference (RNAi) transgenic approach we found that, under cold conditions, the RNAi::OsHOS1 plants showed a higher expression level of OsDREB1A. This was correlated with an increased amount of OsICE1, a master transcription factor of the cold stress signalling. However, the up-regulation of OsDREB1A was transient and the transgenic plants did not show increased cold tolerance. Nevertheless, we could confirm the interaction of OsHOS1 with OsICE1 by Yeast-Two hybrid and bi-molecular fluorescence complementation in Arabidopsis protoplasts. Moreover, we could also determine through an in vitro degradation assay that the higher amount of OsICE1 in the transgenic plants was correlated with a lower amount of OsHOS1. Hence, we could confirm the involvement of the proteasome in this response mechanism. Taken together our results confirm the importance of OsHOS1, and thus of the proteasome, in the modulation of the cold stress signalling in rice.


Assuntos
Resposta ao Choque Frio , Regulação Enzimológica da Expressão Gênica/genética , Oryza/enzimologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Dados de Sequência Molecular , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Interferência de RNA , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Regulação para Cima
20.
Plant Mol Biol ; 82(4-5): 439-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23703395

RESUMO

High salinity causes remarkable losses in rice productivity worldwide mainly because it inhibits growth and reduces grain yield. To cope with environmental changes, plants evolved several adaptive mechanisms, which involve the regulation of many stress-responsive genes. Among these, we have chosen OsRMC to study its transcriptional regulation in rice seedlings subjected to high salinity. Its transcription was highly induced by salt treatment and showed a stress-dose-dependent pattern. OsRMC encodes a receptor-like kinase described as a negative regulator of salt stress responses in rice. To investigate how OsRMC is regulated in response to high salinity, a salt-induced rice cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsRMC promoter as bait. Thereby, two transcription factors (TFs), OsEREBP1 and OsEREBP2, belonging to the AP2/ERF family were identified. Both TFs were shown to bind to the same GCC-like DNA motif in OsRMC promoter and to negatively regulate its gene expression. The identified TFs were characterized regarding their gene expression under different abiotic stress conditions. This study revealed that OsEREBP1 transcript level is not significantly affected by salt, ABA or severe cold (5 °C) and is only slightly regulated by drought and moderate cold. On the other hand, the OsEREBP2 transcript level increased after cold, ABA, drought and high salinity treatments, indicating that OsEREBP2 may play a central role mediating the response to different abiotic stresses. Gene expression analysis in rice varieties with contrasting salt tolerance further suggests that OsEREBP2 is involved in salt stress response in rice.


Assuntos
Oryza/metabolismo , Fator de Transcrição AP-2/metabolismo , Ácido Abscísico/farmacologia , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Oryza/efeitos dos fármacos , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Fator de Transcrição AP-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA