Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 626(7999): 555-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356065

RESUMO

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendências
2.
Sci Total Environ ; 924: 171695, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485025

RESUMO

Increasing aridity associated with climate change may lead to the crossing of critical ecosystem thresholds in drylands, compromising ecosystem services for millions of people. In this context, finding tools to detect at early stages the effects of increasing aridity on ecosystems is extremely urgent to avoid irreversible damage. Here, we assess shifts in plant community functional structure along a spatial aridity gradient in tropical dryland (Brazilian Caatinga), to select the most appropriate plant functional groups as ecological indicators likely useful to predict temporal ecosystem trajectories in response to aridity. We identified seven plant functional groups based on 13 functional traits associated with plant establishment, defense, regeneration, and dispersal, whose relative abundances changed, linearly and non-linearly, with increasing aridity, showing either increasing or decreasing trends. Of particular importance is the increase in abundance of plants with high chemical defense and Crassulacean Acid Metabolism (CAM) photosynthetic pathway, with increasing aridity. We propose the use of these functional groups as early warning indicators to detect aridity impacts on these dryland ecosystems and shifts in ecosystem functioning. This information can also be used in the elaboration of mitigation and ecological restoration measures to prevent and revert current and future climate change impacts on tropical dry forests.


Assuntos
Ecossistema , Florestas , Humanos , Plantas/metabolismo , Mudança Climática , Brasil
3.
Tree Physiol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041710

RESUMO

Increases in hydrological extremes, including drought, are expected for Amazon forests. A fundamental challenge for predicting forest responses lies in identifying ecological strategies which underlie such responses. Characterization of species-specific hydraulic strategies for regulating water use, thought to be arrayed along an 'isohydric-anisohydric' spectrum, is a widely used approach. However, recent studies have questioned the usefulness of this classification scheme, because its metrics are strongly influenced by environments, hence can lead to divergent classifications even within the same species. Here, we propose an alternative approach positing that individual hydraulic regulation strategies emerge from the interaction of environments with traits. Specifically, we hypothesize that the vertical forest profile represents a key gradient in drought-related environments (atmospheric vapor pressure deficit, soil water availability) that drives divergent tree water use strategies for coordinated regulation of stomatal conductance (gs) and leaf water potentials (ΨL) with tree rooting depth, a proxy for water availability. Testing this hypothesis in a seasonal eastern Amazon forest in Brazil, we found that hydraulic strategies indeed depend on height-associated environments. Upper canopy trees, experiencing high VPD, but stable soil water access through deep rooting, exhibited isohydric strategies, defined by little seasonal change in the diurnal pattern of gs and steady seasonal minimum ΨL. By contrast, understory trees, exposed to less variable VPD but highly variable soil water availability, exhibited anisohydric strategies, with fluctuations in diurnal gs that increased in the dry season along with increasing variation in ΨL. Our finding that canopy height structures the coordination between drought-related environmental stressors and hydraulic traits provides a basis for preserving the applicability of the isohydric-to-anisohydric spectrum, which we show here may consistently emerge from environmental context. Our work highlights the importance of understanding how environmental heterogeneity structures forest responses to climate change, providing a mechanistic basis for improving models of tropical ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA