Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302836

RESUMO

The use of inhibitors of gastric acid secretion (IGAS), especially proton pump inhibitors (PPI), has been associated with increased cardiovascular risk. While the mechanisms involved are not known, there is evidence supporting increased oxidative stress, a major activator of matrix metalloproteinases (MMP), as an important player in such effect. However, there is no study showing whether other IGAS such as histamine H2-receptor blockers (H2RB) cause similar effects. This study aimed at examining whether treatment with the H2RB ranitidine promotes oxidative stress resulting in vascular MMP activation and corresponding functional and structural alterations in the vasculature, as compared with those found with the PPI omeprazole. Male Wistar rats were treated (4 weeks) with vehicle (2% tween 20), omeprazole (10 mg/Kg/day; i.p.) or ranitidine (100 mg/Kg/day; gavage). Then the aorta was collected to perform functional, biochemical, and morphometric analysis. Both ranitidine and omeprazole increased gastric pH and oxidative stress assessed in situ with the fluorescent dye dihydroethidium (DHE) and with lucigenin chemiluminescence assay. Both IGAS augmented vascular activated MMP-2. These findings were associated with aortic remodeling (increased media/lumen ratio and number of cells/µm2). Both IGAS also impaired the endothelium-dependent relaxation induced by acetylcholine (isolated aortic ring preparation). This study provides evidence that the H2RB ranitidine induces vascular dysfunction, redox alterations, and remodeling similar to those found with the PPI omeprazole. These findings strongly suggest that IGAS increase oxidative stress and matrix metalloproteinase-2 activity leading to vascular remodeling, which helps to explain the increased cardiovascular risk associated with the use of those drugs.

2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256228

RESUMO

Magnesium (Mg) plays crucial roles in multiple essential biological processes. As the kidneys are the primary organ responsible for maintaining the blood concentration of Mg, people with chronic kidney disease (CKD) may develop disturbances in Mg. While both hyper- and hypomagnesemia may lead to adverse effects, the consequences associated with hypomagnesemia are often more severe and lasting. Importantly, observational studies have shown that CKD patients with hypomagnesemia have greater vascular calcification. Vascular calcification is accelerated and contributes to a high mortality rate in the CKD population. Both in vitro and animal studies have demonstrated that Mg protects against vascular calcification via several potential mechanisms, such as inhibiting the formation of both hydroxyapatite and pathogenic calciprotein particles as well as limiting osteogenic differentiation, a process in which vascular smooth muscle cells in the media layer of the arteries transform into bone-like cells. These preclinical findings have led to several important clinical trials that have investigated the effects of Mg supplementation on vascular calcification in people with CKD. Interestingly, two major clinical studies produced contradictory findings, resulting in a state of equipoise. This narrative review provides an overview of our current knowledge in the renal handling of Mg in health and CKD and the underlying mechanisms by which Mg may protect against vascular calcification. Lastly, we evaluate the strength of evidence from clinical studies on the efficacy of Mg supplementation and discuss future research directions.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Insuficiência Renal Crônica , Animais , Humanos , Magnésio , Osteogênese , Insuficiência Renal Crônica/complicações , Rim
3.
Curr Issues Mol Biol ; 44(12): 6333-6345, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36547093

RESUMO

Anesthesia with propofol is frequently associated with hypotension. The TRPA1 gene contributes to the vasodilator effect of propofol. Hypotension is crucial for anesthesiologists because it is deleterious in the perioperative period. We tested whether the TRPA1 gene polymorphisms or haplotypes interfere with the hypotensive responses to propofol. PCR-determined genotypes and haplotype frequencies were estimated. Nitrite, nitrates, and NOx levels were measured. Propofol induced a more expressive lowering of the blood pressure (BP) without changing nitrite or nitrate levels in patients carrying CG+GG genotypes for the rs16937976 TRPA1 polymorphism and AG+AA genotypes for the rs13218757 TRPA1 polymorphism. The CGA haplotype presented the most remarkable drop in BP. Heart rate values were not impacted. The present exploratory analysis suggests that TRPA1 genotypes and haplotypes influence the hypotensive responses to propofol. The mechanisms involved are probably other than those related to NO bioavailability. With better genetic knowledge, planning anesthesia with fewer side effects may be possible.

4.
Circ Res ; 126(5): 619-632, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31914850

RESUMO

RATIONALE: Remodeling of the vessel wall and the formation of vascular networks are dynamic processes that occur during mammalian embryonic development and in adulthood. Plaque development and excessive neointima formation are hallmarks of atherosclerosis and vascular injury. As our understanding of these complex processes evolves, there is a need to develop new imaging techniques to study underlying mechanisms. OBJECTIVE: We used tissue clearing and light-sheet microscopy for 3-dimensional (3D) profiling of the vascular response to carotid artery ligation and induction of atherosclerosis in mouse models. METHODS AND RESULTS: Adipo-Clear and immunolabeling in combination with light-sheet microscopy were applied to image carotid arteries and brachiocephalic arteries, allowing for 3D reconstruction of vessel architecture. Entire 3D neointima formations with different geometries were observed within the carotid artery and scored by volumetric analysis. Additionally, we identified a CD31-positive adventitial plexus after ligation of the carotid artery that evolved and matured over time. We also used this method to characterize plaque extent and composition in the brachiocephalic arteries of ApoE-deficient mice on high-fat diet. The plaques exhibited inter-animal differences in terms of plaque volume, geometry, and ratio of acellular core to plaque volume. A 3D reconstruction of the endothelium overlying the plaque was also generated. CONCLUSIONS: We present a novel approach to characterize vascular remodeling in adult mice using Adipo-Clear in combination with light-sheet microscopy. Our method reconstructs 3D neointima formation after arterial injury and allows for volumetric analysis of remodeling, in addition to revealing angiogenesis and maturation of a plexus surrounding the carotid artery. This method generates complete 3D reconstructions of atherosclerotic plaques and uncovers their volume, geometry, acellular component, surface, and spatial position within the brachiocephalic arteries. Our approach may be used in a number of mouse models of cardiovascular disease to assess vessel geometry and volume. Visual Overview: An online visual overview is available for this article.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Imageamento Tridimensional/métodos , Neovascularização Fisiológica , Imagem Óptica/métodos , Placa Aterosclerótica/diagnóstico por imagem , Animais , Apolipoproteínas E/genética , Variação Biológica da População , Artérias Carótidas/patologia , Artérias Carótidas/fisiologia , Dieta Hiperlipídica/efeitos adversos , Imageamento Tridimensional/normas , Camundongos , Camundongos Endogâmicos C57BL , Neointima/diagnóstico por imagem , Neointima/patologia , Imagem Óptica/normas , Placa Aterosclerótica/etiologia , Remodelação Vascular
5.
Eur J Clin Pharmacol ; 77(6): 869-877, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33410970

RESUMO

PURPOSE: Propofol anesthesia is usually accompanied by hypotensive responses, which are at least in part mediated by nitric oxide (NO). Arginase I (ARG1) and arginase II (ARG2) compete with NO synthases for their common substrate L-arginine, therefore influencing the NO formation. We examined here whether ARG1 and ARG2 genotypes and haplotypes affect the changes in blood pressure and NO bioavailability in response to propofol. METHODS: Venous blood samples were collected from 167 patients at baseline and after 10 min of anesthesia with propofol. Genotypes were determined by polymerase chain reaction. Nitrite concentrations were measured by using an ozone-based chemiluminescence assay, while NOx (nitrites + nitrates) levels were determined by using the Griess reaction. RESULTS: We found that patients carrying the AG + GG genotypes for the rs3742879 polymorphism in ARG2 gene and the ARG2 GC haplotype show lower increases in nitrite levels and lower decreases in blood pressure after propofol anesthesia. On the other hand, subjects carrying the variant genotypes for the rs10483801 polymorphism in ARG2 gene show more intense decreases in blood pressure (CA genotype) and/or higher increases in nitrite levels (CA and AA genotypes) in response to propofol. CONCLUSION: Our results suggest that ARG2 variants affect the hypotensive responses to propofol, possibly by modifying NO bioavailability. TRIAL REGISTRATION: NCT02442232.


Assuntos
Anestésicos Intravenosos/efeitos adversos , Arginase/genética , Hipotensão/induzido quimicamente , Óxido Nítrico/metabolismo , Propofol/efeitos adversos , Adulto , Idoso , Anestésicos Intravenosos/farmacocinética , Feminino , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Nitratos/sangue , Nitritos/sangue , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Propofol/farmacocinética
6.
BMC Anesthesiol ; 21(1): 91, 2021 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-33773580

RESUMO

BACKGROUND: Lidocaine and magnesium sulfate have become increasingly utilized in general anesthesia. The present study evaluated the effects of these drugs, isolated or combined, on hemodynamic parameters as well as on the cisatracurium-induced neuromuscular blockade (NMB). METHODS: At a university hospital, 64 patients, ASA physical status I and II, undergoing elective surgery with similar pain stimuli were randomly assigned to four groups. Patients received a bolus of lidocaine and magnesium sulfate before the tracheal intubation and a continuous infusion during the operation as follows: 3 mg.kg- 1 and 3 mg.kg- 1.h- 1 (lidocaine - L group), 40 mg.kg- 1 and 20 mg.kg- 1.h- 1 (magnesium - M group), equal doses of both drugs (magnesium plus lidocaine - ML group), and an equivalent volume of isotonic solution (control - C group). Hemodynamic parameters and neuromuscular blockade features were continuously monitored until spontaneous recovery of the train of four (TOF) ratio (TOFR > 0.9). RESULTS: The magnesium sulfate significantly prolonged all NMB recovery features, without changing the speed of onset of cisatracurium. The addition of lidocaine to Magnesium Sulfate did not influence the cisatracurium neuromuscular blockade. A similar finding was observed when this drug was used alone, with a significantly smaller fluctuation of mean arterial pressure (MAP) and heart rate (HR) measures during anesthesia induction and maintenance. Interestingly, the percentage of patients who achieved a TOFR of 90% without reaching T1-95% was higher in the M and ML groups. Than in the C and L groups. There were no adverse events reported in this study. CONCLUSION: Intravenous lidocaine plays a significant role in the hemodynamic stability of patients under general anesthesia without exerting any additional impact on the NMB, even combined with magnesium sulfate. Aside from prolonging all NMB recovery characteristics without altering the onset speed, magnesium sulfate enhances the TOF recovery rate without T1 recovery. Our findings may aid clinical decisions involving the use of these drugs by encouraging their association in multimodal anesthesia or other therapeutic purposes. TRIAL REGISTRATION: NCT02483611 (registration date: 06-29-2015).


Assuntos
Anestesia Geral , Lidocaína/administração & dosagem , Sulfato de Magnésio/administração & dosagem , Adulto , Analgésicos/administração & dosagem , Anestésicos Locais/administração & dosagem , Pressão Arterial/efeitos dos fármacos , Atracúrio/administração & dosagem , Atracúrio/análogos & derivados , Método Duplo-Cego , Combinação de Medicamentos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Infusões Intravenosas , Masculino , Bloqueio Neuromuscular , Bloqueadores Neuromusculares/administração & dosagem , Estudos Prospectivos
7.
Nitric Oxide ; 85: 35-43, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30716418

RESUMO

Hypertension is a multifactorial disease associated with impaired nitric oxide (NO) production and bioavailability. In this respect, restoring NO activity by using nitrite and nitrate has been considered a potential therapeutic strategy to treat hypertension. This possibility is justified by the understanding that both nitrite and nitrate may be recycled back to NO and also promote the generation of other bioactive species. This process involves a complex biological circuit known as the enterosalivary cycle of nitrate, where this anion is actively taken up by the salivary glands and converted to nitrite by nitrate-reducing bacteria in the oral cavity. Nitrite is then ingested and reduced to NO and other nitroso species under the acid conditions of the stomach, whereas reminiscent nitrite that escapes gastric reduction is absorbed systemically and can be converted into NO by nitrite-reductases in tissues. While there is no doubt that nitrite and nitrate exert antihypertensive effects, several agents can impair the blood pressure responses to these anions by disrupting the enterosalivary cycle of nitrate. These agents include dietary and smoking-derived thiocyanate, antiseptic mouthwash, proton pump inhibitors, ascorbate at high concentrations, and xanthine oxidoreductase inhibitors. In this article, we provide an overview of the physiological aspects of nitrite and nitrate bioactivation and the therapeutic potential of these anions in hypertension. We also discuss mechanisms by which agents counteracting the antihypertensive responses to nitrite and nitrate mediate their effects. These critical aspects should be taken into consideration when suggesting nitrate or nitrite-based therapies to patients.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Nitratos/farmacologia , Nitritos/farmacologia , Humanos , Hipertensão/tratamento farmacológico , Nitratos/metabolismo , Nitritos/metabolismo
8.
Nitric Oxide ; 75: 77-84, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496565

RESUMO

Propofol anesthesia is usually accompanied by hypotension, which is at least in part related to enhanced endothelial nitric oxide synthase (NOS3)-derived NO bioavailability. We examined here whether NOS3 polymorphisms (rs2070744, 4b/4a VNTR, rs3918226 and rs1799983) and haplotypes affect the changes in blood pressure and NO bioavailability induced by propofol. Venous blood samples were collected from 168 patients at baseline and after 10 min of anesthesia with propofol 2 mg/kg administered intravenously by bolus injection. Genotypes were determined by polymerase chain reaction and haplotype frequencies were estimated. Nitrite concentrations were measured by using an ozone-based chemiluminescence assay, while NOx (nitrites + nitrates) levels were determined by using the Griess reaction. We found that CT + TT genotypes for the rs3918226 polymorphism, the ba + aa genotypes for the 4b/4a VNTR and the CTbT haplotype were associated with lower decreases in blood pressure and lower increases in nitrite levels after propofol anesthesia. On the other hand, the TCbT and CCbT haplotypes were associated with more intense decreases in blood pressure and higher increases in nitrite levels in response to propofol. Our results suggest that NOS3 polymorphisms and haplotypes influence the hypotensive responses to propofol, possibly by affecting NO bioavailability.


Assuntos
Pressão Sanguínea/genética , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico/farmacocinética , Polimorfismo de Nucleotídeo Único , Propofol/farmacologia , Adulto , Idoso , Anestésicos Intravenosos/farmacologia , Disponibilidade Biológica , Pressão Sanguínea/efeitos dos fármacos , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Nitratos/sangue , Nitritos/sangue
9.
Nitric Oxide ; 63: 39-51, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-27569446

RESUMO

Nitric oxide (NO) is a vasoactive substance synthesized from l-arginine by neuronal (NOS1), endothelial (NOS3), and inducible (NOS2) nitric oxide synthases. NOS3 is the most important NO synthase isoform in the vascular endothelium and therefore it exerts critical roles in the cardiovascular system. NOS3 is encoded by NOS3 gene, which displays a large number of genetic polymorphisms such as single nucleotide polymorphisms (SNPs), variable number of tandem repeats (VNTRs), microsatellites, and insertions/deletions. Interestingly, NOS3 regulation and NO production are affected by some NOS3 polymorphisms. Given these functional consequences and the protective role of NOS3 against cardiovascular diseases, many studies have investigated whether NOS3 polymorphisms affect the susceptibility to cardiovascular diseases and the responses to drugs that affect NOS3 activity in the cardiovascular system. In addition, a growing body of evidence shows the effects of combinations of NOS3 polymorphisms within haplotype blocks on NO bioavailability and disease susceptibility. In this review, we discuss the basic biochemical mechanisms of NOS3 regulation and the clinical and pharmacogenetic impact of NOS3 polymorphisms on cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/genética , Óxido Nítrico Sintase Tipo III/genética , Polimorfismo Genético , Haplótipos , Humanos , Variantes Farmacogenômicos
10.
Environ Res ; 156: 674-682, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28477577

RESUMO

Metal exposure is associated with increased oxidative stress (OS), which is considered an underlying mechanism of metal-induced toxicity. Malondialdehyde (MDA) is a final product of lipid peroxidation, and it has been extensively used to evaluate metal-induced OS. Pro-oxidant effects produced by metals can be mitigated by paraoxonase 1 (PON1), an antioxidant enzyme known to prevent cardiovascular disease and atherosclerosis. Among other factors, the Q192R polymorphism and the exposure to heavy metals have been known to alter PON1 activity. Here, we evaluated the association of blood lead (Pb), cadmium (Cd) and mercury (Hg) levels with PON1 activity, and with MDA concentrations in a randomly selected sample of Brazilian adults aged 40 years or older, living in an urban area in Southern Brazil. A total of 889 subjects were evaluated for blood Pb and Cd levels, and 832 were tested for Hg. Geometric mean of blood Pb, Cd and Hg was 1.93µg/dL, 0.06µg/L and 1.40µg/L, respectively. PON1 activity was significantly different among various genotypes: QQ (PON1=121.4U/mL), QR (PON1=87.5U/mL), and RR (PON1=55.2U/mL), p<0.001. PON1 genotypes were associated only with Cd blood levels. Those with QR genotype had Cd concentrations higher (0.07µg/L) than those with the RR genotype (0.04µg/L) with p=0.034. However, PON1 activity was not significantly associated with metal concentrations. Cluster analysis showed that men who reported to be current smokers and drinkers with higher blood Pb and Cd levels, had significantly lower PON1 activity than non-smokers or -drinkers, and women with lower Pb and Cd levels. RR genotype carriers had lower PON1 activity than those with the QR genotype, and had higher levels of Pb and Cd compared with other genotype carriers. For blood Hg, no association with PON1 activity or genotype was noted. We found low levels of Pb, Cd and Hg in environmentally exposed Brazilian adults. Cd concentrations were increased in subjects with QR genotype. Those with RR genotype had lower PON1 activity and higher levels of Pb and Cd than other genotype carriers. The results of cluster analysis suggested that smoking status exerts a significant influence on PON1 activity. Other studies with environmentally exposed populations are required to further clarify whether low blood levels of metals influence OS biomarkers.


Assuntos
Arildialquilfosfatase/sangue , Cádmio/sangue , Poluentes Ambientais/sangue , Chumbo/sangue , Malondialdeído/sangue , Mercúrio/sangue , Adulto , Idoso , Consumo de Bebidas Alcoólicas/sangue , Arildialquilfosfatase/genética , Brasil , Análise por Conglomerados , Monitoramento Ambiental , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fumar/sangue
11.
Nitric Oxide ; 55-56: 62-9, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27060232

RESUMO

The antihypertensive effects of angiotensin-converting enzyme inhibitors (ACEi) are associated with up-regulation of endothelial nitric oxide synthase (NOS3) activity. This mechanism may explain how polymorphisms in NOS3 gene affect the antihypertensive responses to ACEi. While clinically relevant NOS3 polymorphisms were previously shown to affect the antihypertensive responses to enalapril, no study has tested the hypothesis that NOS3 tagSNPs influence the antihypertensive effects of this drug. We examined whether the NOS3 tagSNPs rs3918226, rs3918188, and rs743506, and their haplotypes, affect the antihypertensive responses to enalapril in 101 patients with essential hypertension. Subjects were prospectively treated only with enalapril for 8 weeks. Genotypes were determined by Taqman(®) allele discrimination assay and real-time polymerase chain reaction (PCR) and haplotype frequencies were estimated. We compared the effects of NOS3 tagSNPs on changes in blood pressure after enalapril treatment. To confirm our findings, multiple linear regression analysis was performed adjusting for age, gender, ethnicity, and alcohol consumption. We found that hypertensive patients carrying the AA genotype for the tagSNP rs3918188 showed lower decreases in blood pressure in response to enalapril. Moreover, the TCA haplotype was associated with improved decreases in blood pressure in response to enalapril compared with the CAG haplotype. Adjustment for covariates in multiple linear regression analysis did not change these effects. In addition, when patients were stratified according to the dose of enalapril used, we found that the carries of the T allele for the functional tagSNP rs3918226 showed more intense decreases in blood pressure in response to enalapril 20 mg/day. Our findings suggest that NOS3 tagSNPs influence the effects of enalapril in essential hypertension.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anti-Hipertensivos/farmacologia , Enalapril/farmacologia , Hipertensão Essencial/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/genética , Polimorfismo de Nucleotídeo Único , Adulto , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Enalapril/uso terapêutico , Hipertensão Essencial/genética , Hipertensão Essencial/fisiopatologia , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade
12.
Nitric Oxide ; 40: 52-9, 2014 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-24878382

RESUMO

Nitrite-derived nitric oxide (NO) formation exerts antihypertensive effects. Because NO inhibits angiotensin converting enzyme (ACE) activity, we carried a comprehensive series of experiments in rats to test the hypothesis that sodium nitrite exerts antihypertensive effects by inhibiting ACE. We examined whether sodium nitrite (15 mg/kg; or vehicle; by gavage): (I) attenuates the pressor responses to angiotensin I at doses of 0.03, 0.1, 0.3, 1, 3, and 10 µg/kg intravenously; (II) attenuates the acute hypertension induced by L-NAME (100 mg/kg; or vehicle; by gavage); (III) attenuates the chronic hypertension induced by L-NAME (1 g/L in drinking water; or vehicle) administered for 6 weeks; (IV) attenuates the hypertension in the 2 kidney-1 clip (2K1C) chronic hypertension model. Blood samples were collected at the end of each study and plasma angiotensin converting enzyme (ACE) activity was measured with a fluorimetric assay using Hippuryl-His-Leu as substrate. ACE inhibitors were used as positive controls. Plasma nitrite concentrations were measured by ozone-based reductive chemiluminescence. The in vitro effects of sodium nitrite (0, 1, 3, 10, 30, 100 µmol/L) on plasma ACE activity were also determined. We found that sodium nitrite did not affect the pressor responses to angiotensin I. Moreover, while sodium nitrite exerted significant antihypertensive effects in acute and chronic hypertension models, no significant effects on plasma ACE activity were found. In vitro experiments showed no effects of sodium nitrite on plasma ACE activity. This is the first study to demonstrate that the acute and chronic antihypertensive effects of sodium nitrite are not associated with significant inhibition of circulating ACE activity.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Anti-Hipertensivos/farmacologia , Peptidil Dipeptidase A/metabolismo , Nitrito de Sódio/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Anti-Hipertensivos/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipertensão/sangue , Hipertensão/induzido quimicamente , Hipertensão/enzimologia , Masculino , NG-Nitroarginina Metil Éster , Peptidil Dipeptidase A/sangue , Ratos , Ratos Wistar , Nitrito de Sódio/química , Relação Estrutura-Atividade
13.
Sci Adv ; 10(11): eadg9278, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478616

RESUMO

Canonical Wnt and sphingosine-1-phosphate (S1P) signaling pathways are highly conserved systems that contribute to normal vertebrate development, with key consequences for immune, nervous, and cardiovascular system function; despite these functional overlaps, little is known about Wnt/ß-catenin-S1P cross-talk. In the vascular system, both Wnt/ß-catenin and S1P signals affect vessel maturation, stability, and barrier function, but information regarding their potential coordination is scant. We report an instance of functional interaction between the two pathways, including evidence that S1P receptor 1 (S1PR1) is a transcriptional target of ß-catenin. By studying vascular smooth muscle cells and arterial injury response, we find a specific requirement for the ß-catenin carboxyl terminus, which acts to induce S1PR1, and show that this interaction is essential for vascular remodeling. We also report that pharmacological inhibition of the ß-catenin carboxyl terminus reduces S1PR1 expression, neointima formation, and atherosclerosis. These findings provide mechanistic understanding of how Wnt/ß-catenin and S1P systems collaborate during vascular remodeling and inform strategies for therapeutic manipulation.


Assuntos
Aterosclerose , Cateninas , Lisofosfolipídeos , Esfingosina/análogos & derivados , Humanos , Cateninas/metabolismo , beta Catenina/metabolismo , Remodelação Vascular , Transdução de Sinais
14.
Curr Res Toxicol ; 6: 100170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737010

RESUMO

The objective of the present narrative review was to synthesize existing clinical and epidemiological findings linking manganese (Mn) exposure biomarkers to autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), and to discuss key pathophysiological mechanisms of neurodevelopmental disorders that may be affected by this metal. Existing epidemiological data demonstrated both direct and inverse association between Mn body burden and ASD, or lack of any relationship. In contrast, the majority of studies revealed significantly higher Mn levels in subjects with ADHD, as well as direct relationship between Mn body burden with hyperactivity and inattention scores in children, although several studies reported contradictory results. Existing laboratory studies demonstrated that impaired attention and hyperactivity in animals following Mn exposure was associated with dopaminergic dysfunction and neuroinflammation. Despite lack of direct evidence on Mn-induced neurobiological alterations in patients with ASD and ADHD, a plethora of studies demonstrated that neurotoxic effects of Mn overexposure may interfere with key mechanisms of pathogenesis inherent to these neurodevelopmental disorders. Specifically, Mn overload was shown to impair not only dopaminergic neurotransmission, but also affect metabolism of glutamine/glutamate, GABA, serotonin, noradrenaline, thus affecting neuronal signaling. In turn, neurotoxic effects of Mn may be associated with its ability to induce oxidative stress, apoptosis, and neuroinflammation, and/or impair neurogenesis. Nonetheless, additional detailed studies are required to evaluate the association between environmental Mn exposure and/or Mn body burden and neurodevelopmental disorders at a wide range of concentrations to estimate the potential dose-dependent effects, as well as environmental and genetic factors affecting this association.

15.
Biochem Pharmacol ; 212: 115571, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127250

RESUMO

The unsatisfactory rates of adequate blood pressure control among patients receiving antihypertensive treatment calls for new therapeutic strategies to treat hypertension. Several studies have shown that oral sodium nitrite exerts significant antihypertensive effects, but the mechanisms underlying these effects remain unclear. While these mechanisms may involve nitrite-derived S-nitrosothiols, their implication in important alterations associated with hypertension, such as aberrant α1-adrenergic vasoconstriction, has not yet been investigated. Here, we examined the effects of oral nitrite treatment on vascular responses to the α1-adrenergic agonist phenylephrine in two-kidney, one clip (2K1C) hypertensive rats and investigated the potential underlying mechanisms. Our results show that treatment with oral sodium nitrite decreases blood pressure and prevents the increased α1-adrenergic vasoconstriction in 2K1C hypertensive rats. Interestingly, we found that these effects require vascular protein S-nitrosylation, and to investigate the specific S-nitrosylated proteins we performed an unbiased nitrosoproteomic analysis of vascular smooth muscle cells (VSMCs) treated with the nitrosylating compound S-nitrosoglutathione (GSNO). This analysis revealed that GSNO markedly increases the nitrosylation of calcium/calmodulin-dependent protein kinase II γ (CaMKIIγ), a multifunctional protein that mediates the α1-adrenergic receptor signaling. This result was associated with reduced α1-adrenergic receptor-mediated CaMKIIγ activity in VSMCs. We further tested the relevance of these findings in vivo and found that treatment with oral nitrite increases CaMKIIγ S-nitrosylation and blunts the increased CaMKIIγ activity induced by phenylephrine in rat aortas. Collectively, these results are consistent with the idea that oral sodium nitrite treatment increases vascular protein S-nitrosylation, including CaMKIIγ as a target, which may ultimately prevent the increased α1-adrenergic vasoconstriction induced by hypertension. These mechanisms may help to explain the antihypertensive effects of oral nitrite and hold potential implications in the therapy of hypertension and other cardiovascular diseases associated with abnormal α1-adrenergic vasoconstriction.


Assuntos
Hipertensão , Nitrito de Sódio , Ratos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Vasoconstrição , Cálcio , Adrenérgicos/farmacologia , Adrenérgicos/uso terapêutico , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/prevenção & controle , Fenilefrina/farmacologia , Receptores Adrenérgicos/uso terapêutico , Receptores Adrenérgicos alfa 1/metabolismo
16.
Pharmacogenomics ; 24(5): 269-281, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014323

RESUMO

Aim: We examined whether ADIPOQ (rs266729 and rs1501299) and NOS3 (rs3918226 and rs1799983) SNPs or the haplotypes formed by them, affect blood pressure (BP) control in 196 patients with adherence to antihypertensive therapy grouped into controlled (BP <140/90 mmHg) and uncontrolled (BP ≥140/90 mmHg) hypertension. Materials & methods: The average of the three most recent BP measurements was retrieved from the patients' electronic medical records. Adherence to antihypertensive therapy was evaluated using the Morisky-Green test. Haplotype frequencies were estimated using Haplo.stats. Multiple logistic/linear regression analyses were adjusted for the covariates ethnicity, dyslipidemia, obesity, cardiovascular disease and uric acid. Results: ADIPOQ rs266729 genotypes CG (additive model) and CG+GG (dominant model) were associated with uncontrolled hypertension and CG was associated with higher systolic BP and mean arterial pressure (p < 0.05). ADIPOQ haplotypes 'GT' and 'GG' were associated with uncontrolled hypertension and 'GT' was associated with higher diastolic BP and mean arterial pressure (p < 0.05). Conclusion: ADIPOQ SNPs and haplotypes affect BP control in hypertensive patients undergoing treatment.


Assuntos
Anti-Hipertensivos , Hipertensão , Humanos , Pressão Sanguínea/genética , Anti-Hipertensivos/uso terapêutico , Polimorfismo de Nucleotídeo Único/genética , Haplótipos/genética , Hipertensão/tratamento farmacológico , Hipertensão/genética , Adiponectina/genética , Adiponectina/farmacologia , Óxido Nítrico Sintase Tipo III/genética
17.
iScience ; 25(10): 105058, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36134334

RESUMO

Mouse models enable the study of genetic factors affecting the complex pathophysiology of metabolic disorders. Here, we identify reductions in leptin levels, food intake, and obesity due to high-fat diet, accompanied by increased leptin sensitivity, in mice that harbor the E2a-Cre transgene within Obrq2, an obesity quantitative trait locus (QTL) that includes the leptin gene. Interestingly, loss of allograft inflammatory factor-1-like (AIF1L) protein in these transgenic mice leads to similar leptin sensitivity, yet marked reversal of the obesity phenotype, with accelerated weight gain and increased food intake. Transgenic mice lacking AIF1L also have low circulating leptin, which suggests that benefits of enhanced leptin sensitivity are lost with further impairment of leptin expression due to loss of AIF1L. Together, our results identify AIF1L as a genetic modifier of Obrq2 and leptin that affects leptin levels, food intake, and obesity during the metabolic stress imposed by HFD.

18.
Cardiovasc Res ; 118(12): 2718-2731, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34478521

RESUMO

AIMS: Graft vascular disease (GVD), a clinically important and highly complex vascular occlusive disease, arises from the interplay of multiple cellular and molecular pathways. While occlusive intimal lesions are composed predominantly of smooth-muscle-like cells (SMLCs), the origin of these cells and the stimuli leading to their accumulation in GVD are uncertain. Macrophages have recently been identified as both potential drivers of intimal hyperplasia and precursors that undergo transdifferentiation to become SMLCs in non-transplant settings. Colony-stimulating factor-1 (CSF1) is a well-known regulator of macrophage development and differentiation, and prior preclinical studies have shown that lack of CSF1 limits GVD. We sought to identify the origins of SMLCs and of cells expressing the CSF1 receptor (CSF1R) in GVD, and to test the hypothesis that pharmacologic inhibition of CSF1 signalling would curtail both macrophage and SMLC activities and decrease vascular occlusion. METHODS AND RESULTS: We used genetically modified mice and a vascular transplant model with minor antigen mismatch to assess cell origins. We found that neointimal SMLCs derive from both donor and recipient, and that transdifferentiation of macrophages to SMLC phenotype is minimal in this model. Cells expressing CSF1R in grafts were identified as recipient-derived myeloid cells of Cx3cr1 lineage, and these cells rarely expressed smooth muscle marker proteins. Blockade of CSF1R activity using the tyrosine kinase inhibitor PLX3397 limited the expression of genes associated with innate immunity and decreased levels of circulating monocytes and intimal macrophages. Importantly, PLX3397 attenuated the development of GVD in arterial allografts. CONCLUSION: These studies provide proof of concept for pharmacologic inhibition of the CSF1/CSF1R signalling pathway as a therapeutic strategy in GVD. Further preclinical testing of this pathway in GVD is warranted.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Remodelação Vascular , Aminopiridinas/farmacologia , Animais , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Receptores Proteína Tirosina Quinases
19.
Basic Clin Pharmacol Toxicol ; 130(2): 277-287, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34825477

RESUMO

Anaesthesia with propofol is frequently associated with hypotension, which is at least partially attributable to increased nitric oxide (NO) formation derived from the activation of protein kinase C (PKC)/endothelial NO synthase (NOS3) axis. In this cross-sectional study, we tested whether PRKCA (which encodes PKCα) polymorphisms, or haplotypes, and interactions among PRKCA and NOS3 polymorphisms affect the hypotensive responses to propofol. We collected venous blood samples from 164 patients before and 10 min after propofol administration. Genotypes were determined by PCR and haplotype frequencies were estimated. Nitrite and NOx (nitrites+nitrates) levels were measured by using an ozone-based chemiluminescence assay and the Griess reaction, respectively. We used multifactor dimensionality reduction to test interactions among PRKCA and NOS3 polymorphisms. Propofol promoted enhanced blood pressure-lowering effects and increased nitrite levels in subjects carrying GA + AA genotypes for the rs16960228 and TC + CC genotypes for the rs1010544 PRKCA polymorphisms, and the CCG haplotype. Moreover, genotypes for the rs1010544 PRKCA polymorphism were associated with higher or lower blood pressure decreases in response to propofol depending on the genotypes for the rs2070744 NOS3 polymorphism. Our findings suggest that PRKCA genotypes and haplotypes impact the hypotensive responses to propofol, possibly by modifying NO bioavailability, and that PRKCA-NOS3 interactions modify the blood pressure-lowering effects of propofol.


Assuntos
Hipotensão/induzido quimicamente , Óxido Nítrico Sintase Tipo III/genética , Propofol/efeitos adversos , Proteína Quinase C-alfa/genética , Adulto , Idoso , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/efeitos adversos , Estudos Transversais , Feminino , Genótipo , Haplótipos , Humanos , Hipotensão/genética , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Propofol/administração & dosagem
20.
Chem Biol Interact ; 349: 109658, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543659

RESUMO

Nitric oxide (NO) metabolites have physiological and pharmacological importance and increasing their tissue concentrations may result in beneficial effects. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) has antioxidant properties that may improve NO bioavailability. Moreover, tempol increases oral nitrite-derived gastric formation of S-nitrosothiols (RSNO). We hypothesized that pretreatment with tempol may further increase tissue concentrations of NO-related species after oral nitrite administration and therefore we carried out a time-dependent analysis of how tempol affects the concentrations of NO metabolites in different tissues after oral nitrite administration to rats. NO metabolites (nitrate, nitrite and RSNO) were assessed by ozone-based reductive chemiluminescence assays in plasma, stomach, aorta, heart and liver samples obtained from anesthetized rats at baseline conditions and 15 min, 30 min, 2 h or 24 h after oral nitrite (15 mg/kg) was administered to rats pretreated with tempol (18 mg/kg) or vehicle 15 min prior to nitrite administration. Aortic protein nitrosation was assessed by resin-assited capture (SNO-RAC) method. We found that pretreatment with tempol transiently enhanced nitrite-induced increases in nitrite, RSNO and nitrate concentrations in the stomach and in the plasma (all P < 0.05), particularly for 15-30 min, without affecting aortic protein nitrosation. Pretreatment with tempol enhanced nitrite-induced increases in nitrite (but not RSNO or nitrate) concentrations in the heart (P < 0.05). In contrast, tempol attenuated nitrite-induced increases in nitrite, RSNO or nitrate concentrations in the liver. These findings show that pretreatment with tempol affects oral nitrite-induced changes in tissue concentrations of NO metabolites depending on tissue type and does not increase nitrite-induced vascular nitrosation. These results may indicate that oral nitrite therapy aiming at achieving increased nitrosation of cardiovascular targets requires appropriate doses of nitrite and is not optimized by tempol.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Óxido Nítrico/metabolismo , Nitritos/administração & dosagem , Administração Oral , Animais , Masculino , Nitratos/sangue , Nitritos/sangue , Ratos , Ratos Wistar , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA