Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(20): e2304110120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155891

RESUMO

Clostridioides difficile infection (CDI) is the most lethal of the five CDC urgent public health treats, resulting in 12,800 annual deaths in the United States alone [Antibiotic Resistance Threats in the United States, 2019 (2019), www.cdc.gov/DrugResistance/Biggest-Threats.html]. The high recurrence rate and the inability of antibiotics to treat such infections mandate discovery of new therapeutics. A major challenge with CDI is the production of spores, leading to multiple recurrences of infection in 25% of patients [C. P. Kelly, J. T. LaMont, N. Engl. J. Med. 359, 1932-1940 (2008)], with potentially lethal consequence. Herein, we describe the discovery of an oxadiazole as a bactericidal anti-C. difficile agent that inhibits both cell-wall peptidoglycan biosynthesis and spore germination. We document that the oxadiazole binds to the lytic transglycosylase SleC and the pseudoprotease CspC for prevention of spore germination. SleC degrades the cortex peptidoglycan, a critical step in the initiation of spore germination. CspC senses germinants and cogerminants. Binding to SleC is with higher affinity than that to CspC. Prevention of spore germination breaks the nefarious cycles of CDI recurrence in the face of the antibiotic challenge, which is a primary cause of therapeutic failure. The oxadiazole exhibits efficacy in a mouse model of recurrent CDI and holds promise in clinical treatment of CDI.


Assuntos
Clostridioides difficile , Clostridioides , Animais , Camundongos , Clostridioides/metabolismo , Clostridioides difficile/metabolismo , Peptidoglicano/metabolismo , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismo
2.
Chemistry ; : e202401987, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820179

RESUMO

A new type of diborate clathrochelate (cage) ligand featuring nine inwardly pointing nitrogen donors that form a large, rigid cavity, termed a mausolate, is presented. The cavity size and high denticity make this an attractive delivery vehicle for large radionuclides in nuclear medicine. Metal mausolate complexes are stable to air and water (neutral pH) and display extremely high thermal stability (> 400 0C). Lanthanide uptake by the mausolate ligand occurs rapidly in solution at room temperature and once complexed, the lanthanide ions are not displaced by a 250-fold excess of a competitive lanthanide salt over more than one week.

3.
Inorg Chem ; 63(11): 4819-4827, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38437739

RESUMO

Progress toward the closure of the nuclear fuel cycle can be achieved if satisfactory separation strategies for the chemoselective speciation of the trivalent actinides from the lanthanides are realized in a nonproliferative manner. Since Kolarik's initial report on the utility of bis-1,2,4-triazinyl-2,6-pyridines (BTPs) in 1999, a perfect complexant-based, liquid-liquid separation system has yet to be realized. In this report, a comprehensive performance assessment for the separation of 241Am3+ from 154Eu3+ as a model system for spent nuclear fuel using hydrocarbon-actuated alkoxy-BTP complexants is described. These newly discovered complexants realize gains that contemporary aryl-substituted BTPs have yet to achieve, specifically: long-term stability in highly concentrated nitric acid solutions relevant to the low pH of unprocessed spent nuclear fuel, high DAm over DEu in the economical, nonpolar diluent Exxal-8, and the demonstrated capacity to complete the separation cycle with high efficiency by depositing the chelated An3+ to the aqueous layer via decomplexation of the metal-ligand complex. These soft-N-donor BTPs are hypothesized to function as bipolar complexants, effectively traversing the organic/aqueous interface for effective chelation and bound metal/ligand complex solubility. Complexant design, separation assays, spectroscopic analysis, single-crystal X-ray crystallographic data, and DFT calculations are reported.

4.
Phys Chem Chem Phys ; 26(19): 14448-14455, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713487

RESUMO

Cobaltcarbonyl-tert-butylacetylene (CCTBA) is a conventional precursor for the selective atomic layer deposition of Co onto silicon surfaces. However, a limited understanding of the deposition mechanism of such cobalt precursors curbs rational improvements on their design for increased efficiency and tuneable selectivity. The impact of using a less reactive internal alkyne instead of a terminal alkyne was investigated using experimental and computational methods. Using electrospray-ionization mass spectrometry, the formation of CCTBA analogs and their gas phase decomposition pathways were studied. Decomposition experiments show very similar decomposition pathways between the two complexes. The internal alkyne dissociates from the Co complex at slightly lower energies than the terminal alkyne, suggesting that an internal alkynyl ligand may be more suited to low temperature ALD. In addition, transition state calculations using the nudged elastic band method confirm an increased reaction barrier between the internal alkyne and the Si-H surface bonds on Si(111). These results suggests that using a less reactive internal alkyne will result in fewer embedded carbon impurities during deposition onto Si wafers. DFT calculations using the PBE functional and periodic boundary conditions also predict increased surface binding with the metal centers of the internal alkynyl complex.

5.
J Am Chem Soc ; 145(10): 5631-5636, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36856576

RESUMO

Cyclobutadiene is a highly reactive antiaromatic hydrocarbon that has fascinated chemists for over 60 years. However, its preparation and uses in chemical synthesis are sparing, in part due to its lengthy synthesis that generates hazardous byproducts including excess heavy metals. Herein, we report a scalable, metal-free cyclobutadiene reagent, diethyldiazabicyclohexene dicarboxylate, and explore its intermolecular [4 + 2] cycloaddition with various electron-deficient alkenes. We also demonstrate its utility in a three-step synthesis of dipiperamide G and a diverse array of product derivatizations including bromocyclobutadiene.

6.
Chemistry ; 29(47): e202301164, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37227412

RESUMO

Plutonium(IV) oxalate hexahydrate (Pu(C2 O4 )2 ⋅ 6 H2 O; PuOx) is an important intermediate in the recovery of plutonium from used nuclear fuel. Its formation by precipitation is well studied, yet its crystal structure remains unknown. Instead, the crystal structure of PuOx is assumed to be isostructural with neptunium(IV) oxalate hexahydrate (Np(C2 O4 )2 ⋅ 6 H2 O; NpOx) and uranium(IV) oxalate hexahydrate (U(C2 O4 )2 ⋅ 6 H2 O; UOx) despite the high degree of unresolved disorder that exists when determining water positions in the crystal structures of the latter two compounds. Such assumptions regarding the isostructural behavior of the actinide elements have been used to predict the structure of PuOx for use in a wide range of studies. Herein, we report the first crystal structures for PuOx and Th(C2 O4 )2 ⋅ 6 H2 O (ThOx). These data, along with new characterization of UOx and NpOx, have resulted in the full determination of the structures and resolution of the disorder around the water molecules. Specifically, we have identified the coordination of two water molecules with each metal center, which necessitates a change in oxalate coordination mode from axial to equatorial that has not been reported in the literature. The results of this work exemplify the need to revisit previous assumptions regarding fundamental actinide chemistry, which are heavily relied upon within the current nuclear field.

7.
Chemistry ; 29(47): e202302206, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605346

RESUMO

Invited for the cover of this issue is the group of Amy Hixon at the University of Notre Dame. The image depicts the newly identified structure of a PuIV oxalate sheet compared to the historically assumed structure. Read the full text of the article at 10.1002/chem.202301164.

8.
Inorg Chem ; 62(31): 12372-12382, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478316

RESUMO

Previously reported carbazole-bis(tetrazole) (CzTR) ligands (where R = iPr and CH2-2,4,6-C6H2Me3) were used to synthesize air-stable, six-coordinate, octahedral bis-ligand Fe(II) complexes (CzTR)2Fe. The synthesis and characterization of these complexes using 1H nuclear magnetic resonance (NMR), X-ray crystallography, Mössbauer spectroscopy, and density functional theory (DFT) calculations are reported. Analysis of the magnetic properties revealed that the isopropyl derivative displays thermally induced spin crossover (SCO) over a temperature range of 150-350 K. This transition appears as an abrupt two-step transition in the solid state but simplifies to a smooth one-step transition in solution. The two-step transition in the solid state has been postulated to be due to lattice and solvation effects. In contrast, the slightly bulkier substituted CH2-2,4,6-C6H2Me3 (CH2Mes) Fe complex displays dramatically different magnetic behavior with no SCO and magnetic data suggesting low-spin Fe(II) with a possible TIP contribution. DFT calculations support the postulate that the change in magnetic behavior is primarily due to the nature of the ligand substituents.

9.
Inorg Chem ; 62(25): 9827-9843, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37315176

RESUMO

Incorporation of secondary metal ions into heterobimetallic complexes has emerged as an attractive strategy for rational tuning of compounds' properties and reactivity, but direct solution-phase spectroscopic interrogation of tuning effects has received less attention than it deserves. Here, we report the assembly and study of a series of heterobimetallic complexes containing the vanadyl ion, [VO]2+, paired with monovalent cations (Cs+, Rb+, K+, Na+, and Li+) and a divalent cation (Ca2+). These complexes, which can be isolated in pure form or generated in situ from a common monometallic vanadyl-containing precursor, enable experimental spectroscopic and electrochemical quantification of the influence of the incorporated cations on the properties of the vanadyl moiety. The data reveal systematic shifts in the V-O stretching frequency, isotropic hyperfine coupling constant for the vanadium center, and V(V)/V(IV) reduction potential in the complexes. These shifts can be interpreted as charge density effects parametrized through the Lewis acidities of the cations, suggesting broad potential for the vanadyl ion to serve as a spectroscopic probe in multimetallic species.

10.
Inorg Chem ; 62(39): 16131-16148, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37721409

RESUMO

The 2,2'-bipyridyl-6,6'-dicarboxylate ligand (bdc) has been shown in prior work to effectively capture the uranyl(VI) ion, UO22+, from aqueous solutions. However, the redox properties of the uranyl complex of this ligand have not been addressed despite the relevance of uranium-centered reduction to the nuclear fuel cycle and the presence of a bipyridyl core in bdc, a motif long recognized for its ability to support redox chemistry. Here, the bdc complex of UO22+ (1-UO2) has been synthetically prepared and isolated under nonaqueous conditions for the study of its reductive chemical and electrochemical behavior. Spectrochemical titration data collected using decamethylcobaltocene (Cp*2Co) as the reductant demonstrate that 1e- reduction of 1-UO2 is accessible, and companion near-infrared and infrared spectroscopic data, along with theoretical findings from density functional theory, provide evidence that supports the accessibility of the U(V) oxidation state. Data obtained for control ruthenium complexes of bdc and related polypyridyl dicarboxylate ligands provide a counterpoint to these findings; ligand-centered reduction of bdc in these control compounds occurs at potentials more negative than those measured for reduction of 1-UO2, further supporting the generation of uranium(V) in 1-UO2. Taken together, these results underscore the usefulness of bdc as a ligand for actinyl ions and suggest that it could be useful for further studies of the reductive activation of these unique species.

11.
Phys Chem Chem Phys ; 25(23): 16048-16059, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272776

RESUMO

Methyl aldohexopyranosides were 13C-labeled at contiguous carbons, crystallized, and studied by single-crystal X-ray crystallography and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to examine the degree to which density functional theory (DFT) can calculate one-bond 13C-13C spin-coupling constants (1JCC) in saccharides with sufficient accuracy to permit their use in MA'AT analysis, a newly-reported hybrid DFT/NMR method that provides probability distributions of molecular torsion angles in solution (Zhang et al., J. Phys. Chem. B, 2017, 121, 3042-3058; Meredith et al., J. Chem. Inf. Model., 2022, 62, 3135-3141). Experimental 1JCC values in crystalline samples of the doubly 13C-labeled compounds were measured by solid-state 13C NMR and compared to those calculated from five different DFT models: (1) 1JCC values calculated from single structures identical to those observed in crystalline samples by X-ray crystallography (all atom refinement); (2) 1JCC values calculated from the single structures in (1) but after Hirshfeld atom refinement (HAR); (3) 1JCC values calculated from the single structures in (1) after DFT-optimization of hydrogen atoms only; and (4 and 5) 1JCC values calculated in rotamers of torsion angle θ2 (C1-C2-O2-O2H) or ω (C4-C5-C6-O6) from which either specific or generalized parameterized equations were obtained and used to calculate 1JCC values in the specific θ2 or ω rotamers observed in crystalline samples. Good qualitative agreement was observed between calculated 1JCC values and those measured by solid-state 13C NMR regardless of the DFT model, but in no cases were calculated 1JCC values quantitative, differing (over-estimated) on average by 4-5% from experimental values. These findings, and those reported recently from solution NMR studies (Tetrault et al., J. Phys. Chem. B 2022, 126, 9506-9515), indicate that improvements in DFT calculations are needed before calculated 1JCC values can be used directly as reliable constraints in MA'AT analyses of saccharides in solution.

12.
Molecules ; 28(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36677952

RESUMO

Tetraazamacrocycles, cyclic molecules with four nitrogen atoms, have long been known to produce highly stable transition metal complexes. Cross-bridging such molecules with two-carbon chains has been shown to enhance the stability of these complexes even further. This provides enough stability to use the resulting compounds in applications as diverse and demanding as aqueous, green oxidation catalysis all the way to drug molecules injected into humans. Although the stability of these compounds is believed to result from the increased rigidity and topological complexity imparted by the cross-bridge, there is insufficient experimental data to exclude other causes. In this study, standard organic and inorganic synthetic methods were used to produce unbridged dibenzyl tetraazamacrocycle complexes of Co, Ni, Cu, and Zn that are analogues of known cross-bridged tetraazamacrocycles and their transition metal complexes to allow direct comparison of molecules that are identical except for the cross-bridge. The syntheses of the known tetraazamacrocycles and the new transition metal complexes were successful with high yields and purity. Initial chemical characterization of the complexes was conducted by UV-Visible spectroscopy, while cyclic voltammetry showed more marked differences in electronic properties from bridged versions. Direct comparison studies of the unbridged and bridged compounds' kinetic stabilities, as demonstrated by decomposition using high acid concentration and elevated temperature, showed that the cyclen-based complex stability did not benefit from cross-bridging. This is likely due to poor complementarity with the Cu2+ ion while cyclam-based complexes benefited greatly. We conclude that ligand-metal complementarity must be maintained in order for the topological and rigidity constraints imparted by the cross-bridge to contribute significantly to complex robustness.


Assuntos
Complexos de Coordenação , Ciclamos , Elementos de Transição , Humanos , Complexos de Coordenação/química , Estrutura Molecular , Raios X , Elementos de Transição/química , Etilenos/química , Cristalografia por Raios X
13.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764242

RESUMO

Twenty novel Mn, Fe, and Cu complexes of ethylene cross-bridged tetraazamacrocycles with potentially copolymerizable allyl and benzyl pendant arms were synthesized and characterized. Multiple X-ray crystal structures demonstrate the cis-folded pseudo-octahedral geometry forced by the rigidifying ethylene cross-bridge and show that two cis coordination cites are available for interaction with substrate and oxidant. The Cu complexes were used to determine kinetic stability under harsh acidic and high-temperature conditions, which revealed that the cyclam-based ligands provide superior stabilization with half-lives of many minutes or even hours in 5 M HCl at 50-90 °C. Cyclic voltammetry studies of the Fe and Mn complexes reveal reversible redox processes indicating stabilization of Fe2+/Fe3+ and Mn2+/Mn3+/Mn4+ oxidation states, indicating the likelihood of catalytic oxidation for these complexes. Finally, dye-bleaching experiments with methylene blue, methyl orange, and rhodamine B demonstrate efficient catalytic decolorization and allow selection of the most successful monomeric catalysts for copolymerization to produce future heterogeneous water purification materials.

14.
Angew Chem Int Ed Engl ; 62(51): e202314523, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37917037

RESUMO

We show that the conductivity of hybrid vanadium bronzes-mixed-valence organic-inorganic vanadium oxides-can be tuned over six orders of magnitude through judicious choice of molecular component. By systematically varying the steric profile, charge density, and propensity to hydrogen bond across a series of eight diammonium-based molecules, we engender multiple distinct motifs of V-O connectivity within the two-dimensional vanadium oxide layers of a family of bulk crystalline hybrid materials. A combination of single-crystal and powder X-ray diffraction analysis, variable-temperature electrical transport measurements, and a range of spectroscopic methods, including UV/Visible diffuse reflectance, X-ray photoelectron, and electron paramagnetic resonance are employed to probe how vanadium oxide layer topology correlates with electron localization. Specifically, alkylammonium molecules yield hybrids featuring more corrugated layers that contain V-O tetrahedra as well as a higher ratio of corner-sharing to edge-sharing polyhedra and that exhibit highly localized electronic behavior, while alkyl bipyridinium molecules yield more regular layers with polyhedral edge-sharing that show substantially delocalized electronic behavior. This work allows for the development of design principles based on structure-property relationships and brings the charge transport capabilities of hybrid vanadium bronzes to more technologically relevant levels.

15.
Angew Chem Int Ed Engl ; 62(28): e202305062, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163228

RESUMO

Heptamethine cyanine dyes enable deep tissue fluorescence imaging in the near infrared (NIR) window. Small molecule conjugates of the benchmark dye ZW800-1 have been tested in humans. However, long-term imaging protocols using ZW800-1 conjugates are limited by their instability, primarily because the chemically labile C4'-O-aryl linker is susceptible to cleavage by biological nucleophiles. Here, we report a modular synthetic method that produces novel doubly strapped zwitterionic heptamethine cyanine dyes, including a structural analogue of ZW800-1, with greatly enhanced dye stability. NIR-I and NIR-II versions of these doubly strapped dyes can be conjugated to proteins, including monoclonal antibodies, without causing undesired fluorophore degradation or dye stacking on the protein surface. The fluorescent antibody conjugates show excellent tumor-targeting specificity in a xenograft mouse tumor model. The enhanced stability provided by doubly strapped molecular design will enable new classes of in vivo NIR fluorescence imaging experiments with possible translation to humans.


Assuntos
Anticorpos Monoclonais , Neoplasias , Animais , Camundongos , Anticorpos Monoclonais/química , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos
16.
Beilstein J Org Chem ; 19: 1511-1524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799174

RESUMO

Due to the lack of new antimicrobial drug discovery in recent years and an ever-growing prevalence of multidrug-resistant "superbugs", there is a pressing need to explore alternative ways to combat pathogenic bacterial and fungal infections. Building upon our previous work in the field of medicinal phytochemistry, the present study is focused on designing, synthesizing, and testing the altered bioactivity of new variants of two original bioactive molecules found in the Argemone mexicana plant. Herein, we report upon 14 variants of berberine and four variants of chelerythrine that have been screened against a pool of 12 microorganisms (five Gram-positive and four Gram-negative bacteria, and three fungi). Additionally, the crystal structures of two berberine variants are described. Several berberine variants show enhanced antibacterial activity compared to the unaltered plant-derived molecule. We also report promising preliminary tumor cytotoxicity effects for a number of the berberine derivatives.

17.
Inorg Chem ; 61(29): 11319-11324, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35830593

RESUMO

Mechanochemistry enables transformations of highly insoluble materials such as uranium dioxide or the mineral studtite [(UO2)(O2)(H2O)2]·(H2O)2 into uranyl triperoxide compounds that can subsequently assemble into hydroxide-bridged uranyl peroxide dimers in the presence of lithium hydroxide. Dissolution of these solids in water yields uranyl peroxide nanoclusters including U24, Li24[(UO2)(O2)(OH)]24. Insoluble uranium solids can transform into highly soluble uranyl peroxide phases in the solid state with miniscule quantities of water. Such reactions are potentially applicable to uranium processing in the front and back end of the nuclear fuel cycle.

18.
Inorg Chem ; 61(43): 17101-17108, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36240111

RESUMO

In efforts to study the periodic chemical properties of the rare earth elements and their structural chemistry, a hybrid double perovskite phase A2B'BX6 with the formula ((CH3)4N)2KLn(NO3)6 (Ln = La-Lu, Y ex. Pm) was synthesized that crystallizes in the cubic space group, Fm3̅m. This series was obtained via evaporative crystallization from a mixture of Ln(NO3)3, KNO3, and (CH3)4N·NO3 in a 1:1:2 ratio from either H2O or 4.0 M HNO3. In this double perovskite structure, the B site containing the lanthanide ion is coordinated by six bidentate nitrate ligands, with the distal N═O oxygen atoms coordinating the potassium on the B' site in an octahedral six-coordinate environment. The two remaining charge-compensating (CH3)4N+ cations occupy the interstitial voids in the lattice on the A site. This periodic series was characterized via single-crystal X-ray diffraction, powder X-ray diffraction, IR, and Raman spectroscopy. Emission spectra of the Eu complex indicate a phase transition to trigonal symmetry upon cooling. This series is unique as it represents a rare isostructural series spanning the entirety of the rare earth elements excluding promethium with homoleptic 12-coordinate rare earth metal ions.

19.
Inorg Chem ; 61(25): 9480-9492, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35700478

RESUMO

We report the synthesis, characterization, and iodine capture application of a novel thorium-organic nanotube, TSN-626, [Th6O4(OH)4(C6H4NO2)7(CHO2)5(H2O)3]·3H2O. The classification as a metal-organic nanotube (MONT) distinguishes it as a rare and reduced dimensionality subset of metal-organic frameworks (MOFs); the structure is additionally hallmarked by low node connectivity. TSN-626 is composed of hexameric thorium secondary building units and mixed O/N-donor isonicotinate ligands that demonstrate selective ditopicity, yielding both terminating and bridging moieties. Because hard Lewis acid tetravalent metals have a propensity to bind with electron donors of rival hardness (e.g., carboxylate groups), such Th-N coordination in a MOF is uncommon. However, the formation of key structural Th-N bonds in TSN-626 cap some of the square antiprismatic metal centers, a position usually occupied by terminal water ligands. TSN-626 was characterized by using complementary analytical and computational techniques: X-ray diffraction, vibrational spectroscopy, N2 physisorption isotherms, and density functional theory. TSN-626 satisfies design aspects for the chemisorption of iodine. The synergy between accessibility through pores, vacancies at the metal-oxo nodes, and pendent N-donor sites allowed a saturated iodine loading of 955 mg g-1 by vapor methods. The crystallization of TSN-626 diversifies actinide-MOF linker selection to include soft electron donors, and these Th-N linkages can be leveraged for the investigation of metal-to-ligand bonding and unconventional topological expressions.

20.
Molecules ; 28(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36615426

RESUMO

Ethylene cross-bridged tetraazamacrocycles are known to produce kinetically stable transition metal complexes that can act as robust oxidation catalysts under harsh aqueous conditions. We have synthesized ligand analogs with single acetate pendant arms that act as pentadentate ligands to Mn, Fe, Co, Ni, Cu, and Zn. These complexes have been synthesized and characterized, including the structural characterization of four Co and Cu complexes. Cyclic voltammetry demonstrates that multiple oxidation states are stabilized by these rigid, bicyclic ligands. Yet, redox potentials of the metal complexes are modified compared to the "parent" ligands due to the pendant acetate arm. Similarly, gains in kinetic stability under harsh acidic conditions, compared to parent complexes without the pendant acetate arm, were demonstrated by a half-life seven times longer for the cyclam copper complex. Due to the reversible, high oxidation states available for the Mn and Fe complexes, the Mn and Fe complexes were examined as catalysts for the bleaching of three commonly used pollutant model dyes (methylene blue, methyl orange, and Rhodamine B) in water with hydrogen peroxide as oxidant. The efficient bleaching of these dyes was observed.


Assuntos
Complexos de Coordenação , Ciclamos , Elementos de Transição , Complexos de Coordenação/química , Cristalografia por Raios X , Etilenos/química , Ligantes , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA