Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Methods ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103446

RESUMO

Intracellular calcium (Ca2+) is ubiquitous to cell signaling across biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+ levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+ in vivo. Ca2+-activated split-TurboID (CaST) labels activated cells within 10 min with an exogenously delivered biotin molecule. The enzymatic signal increases with Ca2+ concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+ activity. Furthermore, the CaST readout can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice.

2.
Zoo Biol ; 43(4): 315-324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685797

RESUMO

The white-bellied pangolin Phataginus tricuspis (Rafinesque 1821) is a semiarboreal species occurring in tropical sub-Saharan Africa. It is the world's most trafficked African pangolin species based on volumes recorded in seizures. Reintroduction of confiscated live pangolins and ex-situ rearing are being explored worldwide as a conservation action. However, the husbandry of seized animals is challenging as the diet of the white-bellied pangolin is poorly known and little studied. We analyzed the stomach contents of dead white-bellied pangolins from two forest-savanna protected areas. Stomach content samples from 13 white-bellied pangolin specimens contained ~165,000 Arthropoda, mostly Hymenoptera (60.34%) and Blattodea (39.66%). Overall, we identified 39 termite and 105 ant species consumed as prey by pangolins. Individual pangolins examined had fed on a maximum of 31 ant species and 13 termite species. The termite and ant species richness varied significantly across the pangolins' last consumed meal. We recorded 24 ant genera dominated by Crematogaster (relative importance [RI] = 17.28). Out of 18 termite genera recorded, the genus Pseudacanthotermes (RI = 17.21) was the most important prey. Ten ant species were preferentially eaten by white-bellied pangolin, with Crematogaster acis being the most common prey species. Four species of termite were most frequently eaten with Pseudacanthotermes militaris being the most abundant. The mean abundance of ants and termites varied among pangolin individuals. The season did not influence the mean abundance of termites eaten by pangolin individuals. However, ant abundance in stomach contents was significantly higher in the dry season. An improved understanding of pangolin feeding behavior and prey selection may help inform conservation husbandry efforts. For example, nutritional analysis of the food eaten by wild pangolins can guide the development of nutritional diets for captive pangolins.


Assuntos
Formigas , Dieta , Isópteros , Pangolins , Animais , Camarões , Formigas/fisiologia , Isópteros/fisiologia , Dieta/veterinária , Pangolins/fisiologia , Ecossistema , Florestas , Conteúdo Gastrointestinal , Comportamento Alimentar/fisiologia
3.
Neuropsychopharmacology ; 49(1): 104-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37488282

RESUMO

Recent clinical and preclinical evidence suggests that psychedelics and entactogens may produce both rapid and sustained therapeutic effects across several indications. Currently, there is a disconnect between how these compounds are used in the clinic and how they are studied in preclinical species, which has led to a gap in our mechanistic understanding of how these compounds might positively impact mental health. Human studies have emphasized extra-pharmacological factors that could modulate psychedelic-induced therapeutic responses including set, setting, and integration-factors that are poorly modelled in current animal experiments. In contrast, animal studies have focused on changes in neuronal activation and structural plasticity-outcomes that are challenging to measure in humans. Here, we describe several hypotheses that might explain how psychedelics rescue neuropsychiatric disease symptoms, and we propose ways to bridge the gap between human and rodent studies. Given the diverse pharmacological profiles of psychedelics and entactogens, we suggest that their rapid and sustained therapeutic mechanisms of action might best be described by the collection of circuits that they modulate rather than their actions at any single molecular target. Thus, approaches focusing on selective circuit modulation of behavioral phenotypes might prove more fruitful than target-based methods for identifying novel compounds with rapid and sustained therapeutic effects similar to psychedelics and entactogens.


Assuntos
Alucinógenos , Transtornos Mentais , Animais , Humanos , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Saúde Mental
4.
J Med Chem ; 67(9): 6922-6937, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38648167

RESUMO

Tauopathy, neuronal atrophy, and psychological impairments are hallmarks of neurodegenerative diseases, such as Alzheimer's disease, that currently lack efficacious clinical treatments capable of rectifying these issues. To address these unmet needs, we used rational drug design to combine the pharmacophores of DYRK1A inhibitors and isoDMTs to develop psychoplastogenic DYRK1A inhibitors. Using this approach, we discovered a nonhallucinogenic compound capable of promoting cortical neuron growth and suppressing tau hyperphosphorylation while also having the potential to mitigate the biological and psychological symptoms of dementia. Together, our results suggest that hybridization of the DYRK1A and psychoplastogen pharmacophores represents a promising strategy for identifying compounds that might address the cognitive as well as the behavioral and psychological symptoms of dementia.


Assuntos
Doença de Alzheimer , Quinases Dyrk , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Proteínas tau , Doença de Alzheimer/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Animais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/síntese química , Proteínas tau/metabolismo , Proteínas tau/antagonistas & inibidores , Camundongos , Fosforilação , Desenho de Fármacos
5.
J Med Chem ; 67(14): 12410-12427, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38979862

RESUMO

Tropane-containing small molecules like scopolamine are a promising class of psychoplastogens. However, their potent antagonism of all muscarinic receptor subtypes presents the potential for undesirable anticholinergic side effects. In an effort to decouple their neuroplasticity-promoting effects from their muscarinic activity, we performed phenotypic structure-activity relationship studies across a variety of structurally distinct subclasses of tropanes. We discovered several novel tropanes capable of significantly increasing cortical neuronal growth while exhibiting drastically reduced activity at all muscarinic receptor subtypes compared to scopolamine.


Assuntos
Receptores Muscarínicos , Tropanos , Animais , Relação Estrutura-Atividade , Tropanos/química , Tropanos/farmacologia , Tropanos/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/química , Escopolamina/farmacologia , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/química , Humanos , Camundongos , Ratos , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
6.
Clin Perinatol ; 51(2): 497-510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705654

RESUMO

This review examines the complexities of preterm birth (PTB), emphasizes the pivotal role of inflammation in the pathogenesis of preterm labor, and assesses current available interventions. Antibiotics, progesterone analogs, mechanical approaches, nonsteroidal anti-inflammatory drugs, and nutritional supplementation demonstrate a limited efficacy. Tocolytic agents, targeting uterine activity and contractility, inadequately prevent PTB by neglecting to act on uteroplacental inflammation. Emerging therapies targeting toll-like receptors, chemokines, and interleukin receptors exhibit promise in mitigating inflammation and preventing PTB.


Assuntos
Nascimento Prematuro , Tocolíticos , Humanos , Gravidez , Feminino , Nascimento Prematuro/prevenção & controle , Tocolíticos/uso terapêutico , Recém-Nascido , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Trabalho de Parto Prematuro/prevenção & controle
7.
Adv Sci (Weinh) ; 11(31): e2400437, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885417

RESUMO

SH2B1 mutations are associated with obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD) in humans. Global deletion of Sh2b1 results in severe obesity, type 2 diabetes, and MASLD in mice. Neuron-specific restoration of SH2B1 rescues the obesity phenotype of Sh2b1-null mice, indicating that the brain is a main SH2B1 target. However, SH2B1 neurocircuits remain elusive. SH2B1-expressing neurons in the paraventricular hypothalamus (PVHSH2B1) and a PVHSH2B1→dorsal raphe nucleus (DRN) neurocircuit are identified here. PVHSH2B1 axons monosynaptically innervate DRN neurons. Optogenetic stimulation of PVHSH2B1 axonal fibers in the DRN suppresses food intake. Chronic inhibition of PVHSH2B1 neurons causes obesity. In male and female mice, either embryonic-onset or adult-onset deletion of Sh2b1 in PVH neurons causes energy imbalance, obesity, insulin resistance, glucose intolerance, and MASLD. Ablation of Sh2b1 in the DRN-projecting PVHSH2B1 subpopulation also causes energy imbalance, obesity, and metabolic disorders. Conversely, SH2B1 overexpression in either total or DRN-projecting PVHSH2B1 neurons protects against diet-induced obesity. SH2B1 binds to TrkB and enhances brain-derived neurotrophic factor (BDNF) signaling. Ablation of Sh2b1 in PVHSH2B1 neurons induces BDNF resistance in the PVH, contributing to obesity. In conclusion, these results unveil a previously unrecognized PVHSH2B1→DRN neurocircuit through which SH2B1 defends against obesity by enhancing BDNF/TrkB signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Obesidade , Núcleo Hipotalâmico Paraventricular , Animais , Obesidade/metabolismo , Obesidade/genética , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Masculino , Feminino , Núcleo Hipotalâmico Paraventricular/metabolismo , Modelos Animais de Doenças , Doenças Metabólicas/metabolismo , Doenças Metabólicas/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Núcleo Dorsal da Rafe/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neurônios/metabolismo
8.
Cytokine Growth Factor Rev ; 78: 50-63, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048393

RESUMO

Preterm birth is a major public health concern, requiring a deeper understanding of its underlying inflammatory mechanisms and to develop effective therapeutic strategies. This review explores the complex interaction between inflammation and preterm labor, highlighting the pivotal role of the dysregulation of inflammation in triggering premature delivery. The immunological environment of pregnancy, characterized by a fragile balance of immune tolerance and resistance, is disrupted in preterm labor, leading to a pathological inflammatory response. Feto-maternal infections, among other pro-inflammatory stimuli, trigger the activation of toll-like receptors and the production of pro-inflammatory mediators, promoting uterine contractility and cervical ripening. Emerging anti-inflammatory therapeutics offer promising approaches for the prevention of preterm birth by targeting key inflammatory pathways. From TLR-4 antagonists to chemokine and interleukin receptor antagonists, these interventions aim to modulate the inflammatory environment and prevent adverse pregnancy outcomes. In conclusion, a comprehensive understanding of the inflammatory mechanisms leading to preterm labor is crucial for the development of targeted interventions in hope of reducing the incidence of preterm birth and improving neonatal health outcomes.


Assuntos
Anti-Inflamatórios , Inflamação , Trabalho de Parto Prematuro , Humanos , Gravidez , Feminino , Trabalho de Parto Prematuro/imunologia , Inflamação/imunologia , Anti-Inflamatórios/uso terapêutico , Nascimento Prematuro/imunologia , Nascimento Prematuro/prevenção & controle , Animais , Recém-Nascido
9.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798353

RESUMO

Intracellular calcium (Ca2+) is ubiquitous to cell signaling across all biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+ levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely-behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+ in vivo. Ca2+-activated Split-TurboID (CaST) labels activated cells within 10 minutes with an exogenously-delivered biotin molecule. The enzymatic signal increases with Ca2+ concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+ activity. Furthermore, the CaST read-out can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice.

10.
Sci Transl Med ; 16(738): eadk1866, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478630

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (NASH), is an advanced stage of metabolic fatty liver disease. The pathogenic mechanisms of MASH center on hepatocyte injury and the ensuing immune response within the liver microenvironment. Recent work has implicated TREM2+ macrophages in various disease conditions, and substantial induction of TREM2+ NASH-associated macrophages (NAMs) serves as a hallmark of metabolic liver disease. Despite this, the mechanisms through which NAMs contribute to MASH pathogenesis remain poorly understood. Here, we identify membrane-spanning 4-domains a7 (MS4A7) as a NAM-specific pathogenic factor that exacerbates MASH progression in mice. Hepatic MS4A7 expression was strongly induced in mouse and human MASH and associated with the severity of liver injury. Whole-body and myeloid-specific ablation of Ms4a7 alleviated diet-induced MASH pathologies in male mice. We demonstrate that exposure to lipid droplets (LDs), released upon injury of steatotic hepatocytes, triggered NAM induction and exacerbated MASH-associated liver injury in an MS4A7-dependent manner. Mechanistically, MS4A7 drove NLRP3 inflammasome activation via direct physical interaction and shaped disease-associated cell states within the liver microenvironment. This work reveals the LD-MS4A7-NLRP3 inflammasome axis as a pathogenic driver of MASH progression and provides insights into the role of TREM2+ macrophages in disease pathogenesis.


Assuntos
Inflamassomos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Inflamassomos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA