RESUMO
Mechanical loading exerts a profound influence on bone density and architecture, but the exact mechanism is unknown. Our study shows that expression of the neurological transcriptional factor zinc finger of the cerebellum 1 (ZIC1) is markedly increased in trabecular bone biopsies in the lumbar spine compared with the iliac crest, skeletal sites of high and low mechanical stress, respectively. Human trabecular bone transcriptome analyses revealed a strong association between ZIC1 mRNA levels and gene transcripts characteristically associated with osteoblasts, osteocytes and osteoclasts. This supposition is supported by higher ZIC1 expression in iliac bone biopsies from postmenopausal women with osteoporosis compared with age-matched control subjects, as well as strongly significant inverse correlation between ZIC1 mRNA levels and BMI-adjusted bone mineral density (BMD) (Z-score). ZIC1 promoter methylation was decreased in mechanically loaded vertebral bone compared to unloaded normal iliac bone, and its mRNA levels correlated inversely with ZIC1 promoter methylation, thus linking mechanical stress to epigenetic control of gene expression. The findings were corroborated in cultures of rat osteoblast progenitors and osteoblast-like cells. This study demonstrates for the first time how skeletal epigenetic changes that are affected by mechanical forces give rise to marked alteration in bone cell transcriptional activity and translate to human bone pathophysiology.
Assuntos
Osteoporose Pós-Menopausa , Animais , Densidade Óssea/genética , Epigênese Genética , Feminino , Humanos , Ílio/metabolismo , Vértebras Lombares/metabolismo , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/patologia , RNA Mensageiro/genética , Ratos , Estresse Mecânico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
OBJECTIVES: To identify genetic determinants of susceptibility to clinical vertebral fractures, which is an important complication of osteoporosis. METHODS: Here we conduct a genome-wide association study in 1553 postmenopausal women with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 cases and 3762 controls. Potentially causal variants were identified using expression quantitative trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies. RESULTS: A locus tagged by rs10190845 was identified on chromosome 2q13, which was significantly associated with clinical vertebral fracture (P=1.04×10-9) with a large effect size (OR 1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not previously been associated with bone mineral density or clinical fractures. CONCLUSION: We have identified a novel genetic variant that is associated with clinical vertebral fractures by mechanisms that are independent of BMD. Further studies are now in progress to validate this association and evaluate the underlying mechanism.
Assuntos
Cromossomos Humanos Par 2/genética , Fraturas por Osteoporose/genética , Fraturas da Coluna Vertebral/genética , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Pós-Menopausa , Locos de Características QuantitativasRESUMO
PURPOSE: Uveal melanoma (UM) has a high propensity for metastatic spread, and approximately 40-50% of patients die of metastatic disease. Metastases can be found at the time of diagnosis but also several years after the tumor has been removed. The survival of disseminated cancer cells is known to be linked to anchorage independence, anoikis resistance, and an adaptive cellular metabolism. The cultivation of cancer cells as multicellular tumor spheroids (MCTS) by anchorage-independent growth enriches for a more aggressive phenotype. The present study examines the differential gene expression of adherent cell cultures, non-adherent MCTS cultures, and uncultured tumor biopsies from three patients with UM. We elucidate the biochemical differences between the culture conditions to find whether the culture of UM as non-adherent MCTS could be linked to an anchorage-independent and more aggressive phenotype, thus unravelling potential targets for treatment of UM dissemination. METHODS: The various culture conditions were evaluated with microarray analysis, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), RNAscope, immunohistochemistry (IHC), and transmission electron microscopy (TEM) followed by gene expression bioinformatics. RESULTS: The MCTS cultures displayed traits associated with anoikis resistance demonstrated by ANGPTL4 upregulation, and a shift toward a lipogenic profile by upregulation of ACOT1 (lipid metabolism), FADS1 (biosynthesis of unsaturated fatty acids), SC4MOL, DHCR7, LSS (cholesterol biosynthesis), OSBPL9 (intracellular lipid receptor), and PLIN2 (lipid storage). Additionally, the present study shows marked upregulation of synovial sarcoma X breakpoint proteins (SSXs), transcriptional repressors related to the Polycomb group (PcG) proteins that modulate epigenetic silencing of genes. CONCLUSIONS: The MCTS cultures displayed traits associated with anoikis resistance, a metabolic shift toward a lipogenic profile, and upregulation of SSXs, related to the PcG proteins.
Assuntos
Anoikis/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Lipogênese/genética , Melanoma/genética , Proteínas de Neoplasias/genética , Proteínas Repressoras/genética , Esferoides Celulares , Neoplasias Uveais/genética , Linhagem Celular Tumoral , Biologia Computacional , Dessaturase de Ácido Graxo Delta-5 , Humanos , Imuno-Histoquímica , Hibridização In Situ , Melanoma/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Uveais/patologiaRESUMO
Precursor B cell production from bone marrow in mice and humans declines with age. Because the mechanisms behind are still unknown, we studied five precursor B cell subsets (ProB, PreBI, PreBII large, PreBII small, immature B) and their differentiation-stage characteristic gene expression profiles in healthy individual toddlers and middle-aged adults. Notably, the composition of the precursor B cell compartment did not change with age. The expression levels of several transcripts encoding V(D)J recombination factors were decreased in adults as compared with children: RAG1 expression was significantly reduced in ProB cells, and DNA-PKcs, Ku80, and XRCC4 were decreased in PreBI cells. In contrast, TdT was 3-fold upregulated in immature B cells of adults. Still, N-nucleotides, P-nucleotides, and deletions were similar for IGH and IGK junctions between children and adults. PreBII large cells in adults, but not in children, showed highly upregulated expression of the differentiation inhibitor, inhibitor of DNA binding 2 (ID2), in absence of changes in expression of the ID2-binding partner E2A. Further, we identified impaired Ig locus contraction in adult precursor B cells as a likely mechanism by which ID2-mediated blocking of E2A function results in reduced bone marrow B cell output in adults. The reduced B cell production was not compensated by increased proliferation in adult immature B cells, despite increased Ki67 expression. These findings demonstrate distinct regulatory mechanisms in B cell differentiation between adults and children with a central role for transcriptional regulation of ID2.
Assuntos
Subpopulações de Linfócitos B/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína 2 Inibidora de Diferenciação/metabolismo , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Antígenos Nucleares/metabolismo , Medula Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , DNA Nucleotidilexotransferase/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Lactente , Proteína 2 Inibidora de Diferenciação/biossíntese , Proteína 2 Inibidora de Diferenciação/genética , Antígeno Ki-67/biossíntese , Autoantígeno Ku , Contagem de Linfócitos , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , RNA Mensageiro/biossíntese , Transdução de Sinais/imunologia , Regulação para Cima , Recombinação V(D)J/genéticaRESUMO
To identify genetic loci influencing bone accrual, we performed a genome-wide association scan for total-body bone mineral density (TB-BMD) variation in 2,660 children of different ethnicities. We discovered variants in 7q31.31 associated with BMD measurements, with the lowest P = 4.1 × 10(-11) observed for rs917727 with minor allele frequency of 0.37. We sought replication for all SNPs located ± 500 kb from rs917727 in 11,052 additional individuals from five independent studies including children and adults, together with de novo genotyping of rs3801387 (in perfect linkage disequilibrium (LD) with rs917727) in 1,014 mothers of children from the discovery cohort. The top signal mapping in the surroundings of WNT16 was replicated across studies with a meta-analysis P = 2.6 × 10(-31) and an effect size explaining between 0.6%-1.8% of TB-BMD variance. Conditional analyses on this signal revealed a secondary signal for total body BMD (P = 1.42 × 10(-10)) for rs4609139 and mapping to C7orf58. We also examined the genomic region for association with skull BMD to test if the associations were independent of skeletal loading. We identified two signals influencing skull BMD variation, including rs917727 (P = 1.9 × 10(-16)) and rs7801723 (P = 8.9 × 10(-28)), also mapping to C7orf58 (r(2) = 0.50 with rs4609139). Wnt16 knockout (KO) mice with reduced total body BMD and gene expression profiles in human bone biopsies support a role of C7orf58 and WNT16 on the BMD phenotypes observed at the human population level. In summary, we detected two independent signals influencing total body and skull BMD variation in children and adults, thus demonstrating the presence of allelic heterogeneity at the WNT16 locus. One of the skull BMD signals mapping to C7orf58 is mostly driven by children, suggesting temporal determination on peak bone mass acquisition. Our life-course approach postulates that these genetic effects influencing peak bone mass accrual may impact the risk of osteoporosis later in life.
Assuntos
Alelos , Densidade Óssea/genética , Estudo de Associação Genômica Ampla , Osteoporose/genética , Proteínas Wnt/genética , Adulto , Fatores Etários , Animais , Densidade Óssea/fisiologia , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Heterogeneidade Genética , Humanos , Masculino , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Crânio/fisiologiaRESUMO
The current study investigates whether microRNA (miRNA) regulators of epithelial-mesenchymal transition (EMT), tissue fibrosis, and angiogenesis are differentially expressed in human primary pterygium. Genome-wide miRNA and mRNA expression profiling of paired pterygium and normal conjunctiva was performed in the context of conventional excision of pterygium with autotransplantation of conjunctiva (n = 8). Quantitative real time polymerase chain reaction (qRT-PCR) was used to validate the expression of key molecules previously detected by microarray. In pterygium, 25 miRNAs and 31 mRNAs were significantly differentially expressed by more than two-fold compared to normal conjunctiva. 14 miRNAs were up-regulated (miR-1246, -486, -451, -3172, -3175, -1308, -1972, -143, -211, -665, -1973, -18a, 143, and -663b), whereas 11 were down-regulated (miR-675, -200b-star, -200a-star, -29b, -200b, -210, -141, -31, -200a, -934, and -375). Unsupervised hierarchical cluster analysis demonstrated that members of the miR-200 family were coexpressed and down-regulated in pterygium. The molecular and cellular functions that were most significant to the miRNA data sets were cellular development, cellular growth and proliferation, and cellular movement. qRT-PCR confirmed the expression of 15 of the 16 genes tested and revealed that miR-429 was down-regulated by more than two-fold in pterygium. The concerted down-regulation of four members from both clusters of the miR-200 family (miR-200a/-200b/-429 and miR-200c/-141), which are known to regulate EMT, and up-regulation of the predicted target and mesenchymal marker fibronectin (FN1), suggest that EMT could potentially play a role in the pathogenesis of pterygium and might constitute promising new targets for therapeutic intervention in pterygium.
Assuntos
Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica/fisiologia , MicroRNAs/genética , Pterígio/genética , RNA Mensageiro/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoenxertos , Proliferação de Células , Túnica Conjuntiva/transplante , Feminino , Fibronectinas/genética , Fibrose , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Pterígio/cirurgia , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND: We previously observed that a radiotherapy-induced biochemical response in plasma was associated with favourable outcome in head and neck squamous carcinoma cancer (HNSCC) patients. The aim of the present study was to compare stress associated blood cell gene expression between two sub-groups of HNSCC patients with different biochemical responses to radiotherapy. METHODS: Out of 87 patients (histologically verified), 10 biochemical 'responders' having a high relative increase in plasma oxidative damage and a concomitant decrease in plasma antioxidants during radiotherapy and 10 'poor-responders' were selected for gene-expression analysis and compared using gene set enrichment analysis. RESULTS: There was a significant induction of stress-relevant gene-sets in the responders following radiotherapy compared to the poor-responders. The relevance of the involvement of similar stress associated gene expression for HNSCC cancer and radioresistance was verified using two publicly available data sets of 42 HNSCC cases and 14 controls (GEO GSE6791), and radiation resistant and radiation sensitive HNSCC xenografts (E-GEOD-9716). CONCLUSIONS: Radiotherapy induces a systemic stress response, as revealed by induction of stress relevant gene expression in blood cells, which is associated to favourable outcome in a cohort of 87 HNSCC patients. Whether these changes in gene expression reflects a systemic effect or are biomarkers of the tumour micro-environmental status needs further study. TRIAL REGISTRATION: Raw data are available at ArrayExpress under accession number E-MEXP-2460.
Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Idoso , Análise de Variância , Teorema de Bayes , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Análise por Conglomerados , Feminino , Neoplasias de Cabeça e Pescoço/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de OligonucleotídeosRESUMO
BACKGROUND: A striking effect of old age is the involuntary loss of muscle mass and strength leading to sarcopenia and reduced physiological functions. However, effects of heavy-load exercise in older adults on diseases and functions as predicted by changes in muscle gene expression have been inadequately studied. METHODS: Thigh muscle global transcriptional activity (transcriptome) was analyzed in cohorts of older and younger adults before and after 12-13 weeks heavy-load strength exercise using Affymetrix microarrays. Three age groups, similarly trained, were compared: younger adults (age 24 ± 4 years), older adults of average age 70 years (Oslo cohort) and above 80 years (old BSU cohort). To increase statistical strength, one of the older cohorts was used for validation. Ingenuity Pathway analysis (IPA) was used to identify predicted biological effects of a gene set that changed expression after exercise, and Principal Component Analysis (PCA) was used to visualize differences in muscle gene expressen between cohorts and individual participants as well as overall changes upon exercise. RESULTS: Younger adults, showed few transcriptome changes, but a marked, significant impact was observed in persons of average age 70 years and even more so in persons above 80 years. The 249 transcripts positively or negatively altered in both cohorts of older adults (q-value < 0.1) were submitted to gene set enrichment analysis using IPA. The transcripts predicted increase in several aspects of "vascularization and muscle contractions", whereas functions associated with negative health effects were reduced, e.g., "Glucose metabolism disorder" and "Disorder of blood pressure". Several genes that changed expression after intervention were confirmed at the genome level by containing single nucleotide variants associated with handgrip strength and muscle expression levels, e.g., CYP4B1 (p = 9.2E-20), NOTCH4 (p = 9.7E-8), and FZD4 (p = 5.3E-7). PCA of the 249 genes indicated a differential pattern of muscle gene expression in young and elderly. However, after exercise the expression patterns in both young and old BSU cohorts were changed in the same direction for the vast majority of participants. CONCLUSIONS: The positive impact of heavy-load strength training on the transcriptome increased markedly with age. The identified molecular changes translate to improved vascularization and muscular strength, suggesting highly beneficial health effects for older adults.
RESUMO
BACKGROUND: Physical molecular interactions are the basis of intracellular signalling and gene regulatory networks, and comprehensive, accessible databases are needed for their discovery. Highly correlated transcripts may reflect important functional associations, but identification of such associations from primary data are cumbersome. We have constructed and adapted a user-friendly web application to discover and identify putative macromolecular associations in human peripheral blood based on significant correlations at the transcriptional level. METHODS: The blood transcriptome was characterized by quantification of 17,328 RNA species, including 341 mature microRNAs in 105 clinically well-characterized postmenopausal women. Intercorrelation of detected transcripts signal levels generated a matrix with > 150 million correlations recognizing the human blood RNA interactome. The correlations with calculated adjusted p-values were made easily accessible by a novel web application. RESULTS: We found that significant transcript correlations within the giant matrix reflect experimentally documented interactions involving select ubiquitous blood relevant transcription factors (CREB1, GATA1, and the glucocorticoid receptor (GR, NR3C1)). Their responsive genes recapitulated up to 91% of these as significant correlations, and were replicated in an independent cohort of 1204 individual blood samples from the Framingham Heart Study. Furthermore, experimentally documented mRNAs/miRNA associations were also reproduced in the matrix, and their predicted functional co-expression described. The blood transcript web application is available at http://app.uio.no/med/klinmed/correlation-browser/blood/index.php and works on all commonly used internet browsers. CONCLUSIONS: Using in silico analyses and a novel web application, we found that correlated blood transcripts across 105 postmenopausal women reflected experimentally proven molecular associations. Furthermore, the associations were reproduced in a much larger and more heterogeneous cohort and should therefore be generally representative. The web application lends itself to be a useful hypothesis generating tool for identification of regulatory mechanisms in complex biological data sets.
Assuntos
Redes Reguladoras de Genes , MicroRNAs , Células Sanguíneas , Feminino , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , Análise de Sequência de RNARESUMO
A transcriptome analysis compared gene expression in human bone biopsy samples taken from lumbar spine and iliac crest, sites that experience high and low levels of mechanical stress, respectively. The analysis revealed that the zinc finger protein of cerebellum (Zic) family member transcription factor Zic1 was the most up-regulated gene in the lumbar spine (202-fold; P<10(-7)) in comparison with the iliac crest. Software analysis of differential gene expression in the biopsy samples identified the ciliary-related proteins PATCH1 and GLI-Kruppel family members Gli1 and Gli3 as part of a potential molecular network associated with Zic1. RT-PCR confirmed the expression of Zic1, Gli1, and Gli3 and other related key signaling mediators in osteoblastic cells and osteocytes in vitro. Zic1 was immunolocalized in the cytosol and nucleus of the murine osteocyte cell line MLO-Y4 and osteoblast-like cells MC3T3-E1 and in primary rat osteoblasts. MLO-Y4 cells subjected to prolonged oscillatory fluid flow showed increased localization of Zic1 in the nucleus with diminished levels in the cytosol, but no such changes were seen in MC3T3-E1 cells. A shear stress-induced increase in T-cell factor/lymphoid enhancer factor transcriptional activity was abolished by Zic1 gene silencing. These results suggest that Zic1, perhaps together with Gli1 and Gli3, may act as a link between mechanosensing and Wnt signaling. We conclude that Zic1, a neural developmental transcription factor, plays an important role in shear flow mechanotransduction in osteocytes.
Assuntos
Osso e Ossos/metabolismo , Mecanotransdução Celular , Osteócitos/metabolismo , Fatores de Transcrição/fisiologia , Animais , Linhagem Celular , Cílios , Perfilação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Ratos , Estresse Mecânico , Proteína GLI1 em Dedos de Zinco , Proteína Gli3 com Dedos de ZincoRESUMO
BACKGROUND: To identify candidate tear fluid biomarkers in patients with unilateral acute anterior uveitis (AAU) that can aid in the differentiation between these patients and patients with bacterial keratitis or healthy controls. METHODS: Thirteen patients (40.1 ± 16.2 years of age) with unilateral AAU, seven patients with unilateral bacterial keratitis (40.2 ± 15.3 years of age), and 14 healthy subjects (41.1 ± 11.6 years of age) were included. The tear proteome of affected eyes was compared with that of the unaffected eye or healthy controls. Proteins were identified by liquid chromatography tandem mass spectrometry and enzyme-linked immunosorbent assay. RESULTS: Relative protein ratios were detected and calculated for 272 unique proteins. Compared with healthy controls and the unaffected eye, the top upregulated proteins in AAU eyes were submaxillary gland androgen regulated protein 3B (SMR3B) and SMR3A. Similarly, the top upregulated proteins in bacterial keratitis were S100 calcium-binding protein A9 and orosomucoid 2. The acute phase response protein Serpin Family A Member 3 (SERPINA3) was increased in the healthy eye of AAU patients (P = 0.019) compared with healthy controls. Laser flare measurements in affected eyes of AAU patients showed positive logarithmic correlation with SERPINA3 in tear samples of the unaffected eye (P = 0.022). The use of SERPINA3 as a tear biomarker yielded a sensitivity of 85% and a specificity of 71% in detecting patients with AAU in the study population. CONCLUSIONS: The acute phase response protein SERPINA3 was increased in tear samples of unaffected eyes of patients with unilateral AAU compared with healthy controls. This study highlights SERPINA3 as a potential biomarker for AAU. Future research should explore the dynamic properties of SERPINA3 in the tear fluid of active and quiescent uveitis eyes.
RESUMO
The number of circulating B-cells in peripheral blood plateaus between 2 and 24 months of age, and thereafter declines gradually. How this reflects the kinetics of the precursor B-cell pool in the bone marrow is of clinical interest, but has not been studied thoroughly in humans. The authors analyzed bone marrow (n = 37) from healthy children and adults (flow cytometry) searching for age-related changes in the total precursor B-cell compartment. In an age-matched cohort (n = 25) they examined age-related global gene expression changes (Affymetrix) in unsorted bone marrow with special reference to the recombination activating gene 1, RAG1. Subsequently, they searched the entire gene set for transcripts correlating to the RAG1 profile to discover other known and possibly new precursor B-cell related transcripts. Both methods disclosed a marked, transient increase of total precursor B-cells at 6-20 months, followed by a rapid decrease confined to the first 2 years. The decline thereafter was considerably slower, but continued until adulthood. The relative composition of total precursor B-cells, however, did not change significantly with age. The authors identified 54 genes that were highly correlated to the RAG1 profile (r >or= .9, p < 1 x 10(-8)). Of these 54 genes, 15 were characteristically B-lineage associated like CD19, CD79, VPREB, EBF1, and PAX5; the remaining 39 previously not described as distinctively B-lineage related. The marked, transient increase in precursor B-cells and RAG1 transcriptional activity is not reflected by a similar peak in B-cells in peripheral blood, whereas the sustained plateau concurs in time.
Assuntos
Envelhecimento/sangue , Subpopulações de Linfócitos B , Pré-Escolar , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas , Lactente , Contagem de Linfócitos , Adolescente , Adulto , Envelhecimento/imunologia , Medula Óssea/crescimento & desenvolvimento , Exame de Medula Óssea , Linhagem da Célula , Criança , Estudos de Coortes , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Recém-Nascido , Masculino , RNA Mensageiro/genética , Transcrição Gênica , Adulto JovemRESUMO
PURPOSE: To determine whether unilateral acute anterior uveitis (AAU) induces ipsilateral changes in the tear fluid proteome. METHODS: Five patients (25-77 years old) with unilateral AAU were included. Tear fluid samples were obtained using Schirmer's test strips. The healthy eye served as control. Proteins were identified by liquid chromatography tandem mass spectrometry. RESULTS: Two hundred forty-two tear fluid sample proteins were identified, of which 75 were present in at least three patients. Nine proteins were at least 1.5-fold increased, whereas eight were at least 1.5-fold decreased in tears from the diseased eye compared with the healthy eye. APOBEC3A was significantly increased (1.43-fold; P = 0.04), whereas TGM2 was significantly decreased (- 1.21-fold; P = 0.03) in tears from the diseased eye relative to the healthy eye. Ingenuity Pathway Analysis identified LXR/RXR (P < 1.02E-4) as a top canonical pathway. CONCLUSION: Unilateral AAU induced detectable changes in the ipsilateral tear fluid proteome and involvement of the inflammation-associated LXR/RXR pathway.
RESUMO
We investigated mechanisms resulting in low bone mineral density (BMD) and susceptibility to fracture by comparing noncoding RNAs (ncRNAs) in biopsies of non-weight-bearing (NWB) iliac (n = 84) and weight bearing (WB) femoral (n = 18) postmenopausal bone across BMDs varying from normal (T-score > -1.0) to osteoporotic (T-score ≤ -2.5). Global bone ncRNA concentrations were determined by PCR and microchip analyses. Association with BMD or fracture, adjusted by age and body mass index, were calculated using linear and logistic regression and least absolute shrinkage and selection operator (Lasso) analysis. At 10% false discovery rate (FDR), 75 iliac bone ncRNAs and 94 femoral bone ncRNAs were associated with total hip BMD. Eight of the ncRNAs were common for the two sites, but five of them (miR-484, miR-328-3p, miR-27a-5p, miR-28-3p, and miR-409-3p) correlated positively to BMD in femoral bone, but negatively in iliac bone. Of predicted pathways recognized in bone metabolism, ECM-receptor interaction and proteoglycans in cancer emerged at both sites, whereas fatty acid metabolism and focal adhesion were only identified in iliac bone. Lasso analysis and cross-validations identified sets of nine bone ncRNAs correlating strongly with adjusted total hip BMD in both femoral and iliac bone. Twenty-eight iliac ncRNAs were associated with risk of fracture (FDR < 0.1). The small nucleolar RNAs, RNU44 and RNU48, have a function in stabilization of ribosomal RNAs (rRNAs), and their association with fracture and BMD suggest that aberrant processing of rRNAs may be involved in development of osteoporosis. Cis-eQTL (expressed quantitative trait loci) analysis of the iliac bone biopsies identified two loci associated with microRNAs (miRNAs), one previously identified in a heel-BMD genomewide association study (GWAS). In this comprehensive investigation of the skeletal genetic background in postmenopausal women, we identified functional bone ncRNAs associated to fracture and BMD, representing distinct subsets in WB and NWB skeletal sites. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Assuntos
Densidade Óssea , Fraturas Ósseas , Osteoporose , RNA não Traduzido/genética , Densidade Óssea/genética , Osso e Ossos , Feminino , Fraturas Ósseas/genética , Humanos , Osteoporose/genética , Suporte de CargaRESUMO
Single nucleotide polymorphisms (SNPs) have recently replaced microsatellites as the genetic markers of choice in linkage analysis, primarily because they are more abundant and the genotypes more amenable for automatic calling. One of the most recently launched linkage mapping sets (LMS) is the Applied Biosystems Human LMS 4K, which is a genome-wide linkage set based on the SNPlex technology and the use of clustered SNPs. In this article the authors report on their experience with this set and the associated genotyping software GeneMapper version 4.0, which they have used for linkage analyses in 17 moderate to large families with assumed monogenic disease. For comparison of methods, they also performed a genome-wide linkage analysis in 1 of the 17 families using the Affymetrix GeneChip Human Mapping 10K 2.0 array. The conclusion is that both methods performed technically well, with high call rates and comparable and low rates of Mendelian inconsistencies. However, genotyping is less automated in GeneMapper version 4.0 than in the Affymetrix software and thus more time consuming.
Assuntos
Ligação Genética/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Família Multigênica/genética , Polimorfismo de Nucleotídeo Único/genética , Marcadores Genéticos/genética , Humanos , SoftwareRESUMO
BACKGROUND: Studies have revealed an association between overweight/obesity and multiple myeloma. However, the factors linking a dysregulated energy metabolism to this disease have not been identified. Adipose tissue produces and secretes the adipokines leptin, adiponectin and resistin, involved in metabolism and cell growth. METHODS: We measured the plasma concentrations of these three adipokines in newly diagnosed multiple myeloma as well as in patients with relapse. We further explored the importance of leptin in multiple myeloma by performing gene expression profiling in two myeloma cell lines. RESULTS: At diagnosis, leptin was increased (P < 0.05) in both female and male patients compared with controls. Adiponectin was reduced (P < 0.05) among male patients, whereas no significant changes in resistin were noted among any patients. In patients with relapse and treated with thalidomide, no particular adipokine pattern was revealed. Leptin induced the expression of several genes important for cell signaling, growth and viability. CONCLUSIONS: The plasma concentrations of leptin and adiponectin, but not resistin, were abnormal in newly diagnosed multiple myeloma. Adipose tissue may modify the growth and metabolism of myeloma cells through adipokine-mediated effects.
Assuntos
Regulação Neoplásica da Expressão Gênica , Leptina/sangue , Mieloma Múltiplo/sangue , Resistina/sangue , Adiponectina/sangue , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Imunossupressores/administração & dosagem , Masculino , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Talidomida/administração & dosagemRESUMO
PURPOSE: The development of a suitable storage method for retinal pigment epithelium (RPE) is necessary in the establishment of future RPE replacement therapy, and storage temperature has proven to be pivotal for cell survival. ARPE-19, a widely used model for RPE, has been shown to yield the greatest number of viable cells when stored at 16°C compared to other storage temperatures. In this study, we analyze the gene expression profile of cultured ARPE-19 cells after seven days of storage at different temperatures in an effort to predict the gene-level consequences of storage of RPE transplants. MATERIALS AND METHODS: ARPE-19 cells were cultured until confluence and then stored in minimum essential medium at 4°C, 16°C, and 37°C for seven days. The total RNA was isolated and the gene expression profile was determined using DNA microarrays. The Results were validated using qPCR. RESULTS: Principal component and hierarchical clustering analyses show that the gene expression profiles of cell cultures stored at different temperatures cluster into separate groups. Cultures stored at 4°C cluster closest to the control cultures that were not stored and display the least change in gene expression after storage (157 differentially expressed genes). Cultures stored at 16°C and 37°C display a much larger change in differential gene expression (1787 and 1357 differentially expressed genes, respectively). At 16°C, the expression of several genes with proposed tumor suppressor functions was markedly increased. Changes in regulation of several known signaling pathways and of oxidative stress markers were discovered at both 16°C and 37°C, and activation of the angiogenesis marker vascular endothelial growth factor (VEGF) was discovered at 37°C. There was no evidence of the activation of inflammatory processes in stored cell cultures. CONCLUSION: ARPE-19 cultures stored at 16°C show the greatest propensity to modulate their gene expression profile in a manner that supports cell survival during storage.
Assuntos
Criopreservação , Regulação da Expressão Gênica/fisiologia , Preservação de Órgãos , Epitélio Pigmentado da Retina/citologia , Transdução de Sinais/genética , Transcriptoma/genética , Sobrevivência Celular/genética , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/genética , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/metabolismoRESUMO
DNA methylation affects expression of associated genes and may contribute to the missing genetic effects from genome-wide association studies of osteoporosis. To improve insight into the mechanisms of postmenopausal osteoporosis, we combined transcript profiling with DNA methylation analyses in bone. RNA and DNA were isolated from 84 bone biopsies of postmenopausal donors varying markedly in bone mineral density (BMD). In all, 2529 CpGs in the top 100 genes most significantly associated with BMD were analyzed. The methylation levels at 63 CpGs differed significantly between healthy and osteoporotic women at 10% false discovery rate (FDR). Five of these CpGs at 5% FDR could explain 14% of BMD variation. To test whether blood DNA methylation reflect the situation in bone (as shown for other tissues), an independent cohort was selected and BMD association was demonstrated in blood for 13 of the 63 CpGs. Four transcripts representing inhibitors of bone metabolism-MEPE, SOST, WIF1, and DKK1-showed correlation to a high number of methylated CpGs, at 5% FDR. Our results link DNA methylation to the genetic influence modifying the skeleton, and the data suggest a complex interaction between CpG methylation and gene regulation. This is the first study in the hitherto largest number of postmenopausal women to demonstrate a strong association among bone CpG methylation, transcript levels, and BMD/fracture. This new insight may have implications for evaluation of osteoporosis stage and susceptibility.
Assuntos
Metilação de DNA , Osteoporose Pós-Menopausa/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Células Sanguíneas/metabolismo , Densidade Óssea/genética , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/metabolismo , Estudos de Casos e Controles , Ilhas de CpG , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Marcadores Genéticos/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pessoa de Meia-Idade , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismoRESUMO
BACKGROUND: During the past years, we and others discovered a series of human ATP-binding cassette (ABC) transporters, now referred to as ABC A-subfamily transporters. Recently, a novel testis-specific ABC A transporter, Abca17, has been cloned in rodent. In this study, we report the identification and characterization of the human ortholog of rodent Abca17. RESULTS: The novel human ABC A-transporter gene on chromosome 16p13.3 is ubiquitously expressed with highest expression in glandular tissues and the heart. The new ABC transporter gene exhibits striking nucleotide sequence homology with the recently cloned mouse (58%) and rat Abca17 (51%), respectively, and is located in the syntenic region of mouse Abca17 indicating that it represents the human ortholog of rodent Abca17. However, unlike in the mouse, the full-length ABCA17 transcript (4.3 kb) contains numerous mutations that preclude its translation into a bona fide ABC transporter protein strongly suggesting that the human ABCA17 gene is a transcribed pseudogene (ABCA17P). We identified numerous alternative ABCA17P splice variants which are transcribed from two distinct transcription initiation sites. Genomic analysis revealed that ABCA17P borders on another ABC A-subfamily transporter - the lung surfactant deficiency gene ABCA3. Surprisingly, we found that both genes overlap at their first exons and are transcribed from opposite strands. This genomic colocalization and the observation that the ABCA17P and ABCA3 genes share significant homologies in several exons (up to 98%) suggest that both genes have evolved by gene duplication. CONCLUSION: Our results demonstrate that ABCA17P and ABCA3 form a complex of overlapping genes in the human genome from which both non-coding and protein-coding ABC A-transporter RNAs are expressed. The fact that both genes overlap at their 5' ends suggests interdependencies in their regulation and may have important implications for the functional analysis of the disease gene ABCA3. Moreover, this is the first demonstration of the expression of a pseudogene and its parent gene from a common overlapping DNA region in the human genome.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Homologia de Genes , Proteínas/genética , Pseudogenes , Processamento Alternativo , Animais , Sequência de Bases , Cromossomos Humanos Par 16/genética , DNA Complementar/genética , Éxons/genética , Etiquetas de Sequências Expressas , Duplicação Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Família Multigênica , Mutação , Ratos , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Sítio de Iniciação de Transcrição , Transcrição GênicaRESUMO
Global gene expression profiling has been used to study the molecular mechanisms of increased bone remodeling caused by PHPT. This disease is a model for chronic over-stimulation of target organs by PTH due to an inappropriate overproduction of the hormone. Hyperactivity of osteoblasts and osteoclasts lead to increased calcium and phosphate mobilization from the skeleton and hypercalcaemia. The ensemble of genes that alter expression and thus is responsible for the effects of chronic PTH stimulation is today largely unknown. The differentiated gene expression profiles revealed characteristic molecular disease modalities which define the bone remodeling abnormalities occurring in PTH dependent osteodystrophy. We analyzed mRNAs in transiliacal bone biopsies from 7 patients with PHPT using Affymetrix HG-U133A Gene Chips containing more than 22000 different probe sets. Similar analyses of the global transcriptional activity were repeated in a second bone biopsy from the same patient taken one year after surgery and reversal of disease parameters. Real time PCR was carried out on many genes for corroboration of the results. Out of more than 14500 different genes examined, 99 which were related to bone and extra-cellular matrix, showed altered expression. Of these were 85 up- and 14 down-regulated before operation. The majority of regulated genes represented structural and adhesion proteins, but included also proteases and protease regulators which promote resorption. Increased expressions of collagen type 1 and osteocalcin mRNAs in disease reflecting the PTH anabolic action were paralleled by increased concentrations of these proteins in serum. In addition, genes encoding transcriptional factors and their regulators as well as cellular signal molecules were up-regulated during disease. The identified genetic signature represents the first extensive description of the ensemble of bone and matrix related mRNAs, which are regulated by chronic PTH action. These results identify the molecular basis for this skeletal disease, and provide new insight into this clinical condition with potential bearing on future treatment.