Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Fluoresc ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038874

RESUMO

This study examined the surface morphology and photocatalytic activity of nickel oxide (NiO) nanoparticles prepared through a chemical method. The synthesized nanoparticle was characterized by using spectroscopic and microscopic techniques. Photocatalytic degradation of hazardous Eriochrome Black T (EBT) was carried out using the synthesized nanoparticle and the efficiency of the NiO used was determined. Highest degradation efficiency of 70% at 25 mg loading was observed at 40 min exposure time. The study concluded that the synthesized nanoparticles could be used in industrial wastewater treatment containing organic dyes.

2.
J Fluoresc ; 32(5): 1769-1777, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35678901

RESUMO

Quantum dots (QDs) have attracted much attention over the past decades due to their outstanding properties. However, obtaining QDs with excellent photoluminescence and quantum yields (QYs) from their aqueous synthesis is still a big concern. We herein present a green and facile synthesis of AgInS (AIS) QDs and AgInS-ZnS (AIS-ZnS) core-shell QDs using a combination of two capping agents (glutathione and sodium citrate). The temporal evolution of the optical properties is investigated by varying the reaction time and pH of the solution. The results show that the fluorescence intensity of the QDs increases as the reaction time increase, while the emission position blue-shift as the pH of the solution increase. An outstanding photoluminescence quantum yield (PLQY) of 90% is obtained at optimized synthetic conditions. The Fourier transform Infrared studies confirm efficient passivation of the QDs by the capping agents. The XRD analysis reveals that all the materials crystallize in the tetragonal crystalline phase, while the TEM micrographs of AIS-ZnS QDs reveal a spherical shape. The EDS analysis confirms the presence of Silver, Indium, Sulphide, and Zinc elements. The reported synthetic route is facile and eco-friendly.


Assuntos
Luminescência , Pontos Quânticos , Prata , Pontos Quânticos/química , Sulfetos/química , Compostos de Zinco/química
3.
Nanotechnology ; 32(29)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33761493

RESUMO

The synthesis of ZnInS (ZIS) quantum dots (QDs) in aqueous medium using thioglycolic acid (TGA) and sodium citrate as dual capping agents has been reported. The as-synthesized ZIS QDs were water soluble, emitting at 512 nm and nearly spherical in shape with average particle size of 8.9 ± 1.4 nm. The as-synthesized ZIS QDs were tested for its fluorescence response against different metal ions and the results revealed that ZIS QDs were selectively quenched by Co2+ions compared to other ions. The fluorescence sensing experiment showed that ZIS QDs has a linear response against the concentration of Co2+ions (0.1-100µM ) with the detection limit of 0.099µM. Based on the transmission electron microscope and absorption spectroscopy analyzes, the fluorescence quenching is attributed to the formation of surface ligand-metal complex (TGA-Co2+ions) which caused aggregation of the QDs. The present method explores the synthesis of zero-dimentional ZIS QDs and its potential in the selective detection of Co2+ions in aqueous solution.

4.
J Fluoresc ; 31(5): 1297-1302, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34101098

RESUMO

Graphene oxide is well known for its adsorption properties with aromatic compounds. In this study, graphene oxide and eco-friendly ternary CuInS2/ZnS QDs were used to prepare graphene oxide-qunatum dots (GO-QDs) nanocomposite via in-situ method. The composite was characterized using ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. The effect of the polycyclic aromatic hydrocarbons (PAHs) on the PL properties of the nanocomposite was investigated. The results showed that the addition of PAHs increased the PL intensity of the nanocomposite. This "turn-on" fluorescence approach can be used for the successful detection of PAHs in aqueous media.

5.
J Fluoresc ; 31(4): 1177-1190, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34032972

RESUMO

A luminescent Cobalt(II) co-crystal [Co13(PDC)16(H2O)24.7H2O] 1 (where H2PDC = 2,6-pyridinedicarboxylic acid) have been prepared by oven-heating and slow evaporation of solvent. Single crystal X-ray diffraction (SCXRD) analysis revealed that 1 is a mixture of complexes that crystallizes in the triclinic space group P-1 and the geometry around the Co(II) ions is octahedral. The structure is extensively imbued with hydrogen bonding that helps in stabilizing the complex. Thermogravimetric analysis indicates that 1 is thermally stable up to 364 οC. The luminescence properties of 1 revealed a strong emission centered at 437 nm (λex = 345 nm) assigned to ligand to metal charge transfer (LMCT). The luminescence sensing of 1 towards volatile organic molecules were also examined. However, 1 displayed a turn off towards methanol compared to other molecules with high quenching efficiency and low limit of detection (3.5 × 10-4 vol%). The results show excellent selectively and high sensitivity. Powder X-ray diffraction studies revealed that the structural integrity of the complex was maintained after exposure to methanol vapour. Theoretical studies also revealed small binding energy (-413.2 au) and low energy gap (1.19) for 1-CH3OH adduct.

6.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830396

RESUMO

The link between the microbiome and cancer has led researchers to search for a potential probe for intracellular targeting of bacteria and cancer. Herein, we developed near infrared-emitting ternary AgInSe/ZnS quantum dots (QDs) for dual bacterial and cancer imaging. Briefly, water-soluble AgInSe/ZnS QDs were synthesized in a commercial kitchen pressure cooker. The as-synthesized QDs exhibited a spherical shape with a particle diameter of 4.5 ± 0.5 nm, and they were brightly fluorescent with a photoluminescence maximum at 705 nm. The QDs showed low toxicity against mouse mammary carcinoma (FM3A-Luc), mouse colon carcinoma (C26), malignant fibrous histiocytoma-like (KM-Luc/GFP) and prostate cancer cells, a greater number of accumulations in Staphylococcus aureus, and good cellular uptake in prostate cancer cells. This work is an excellent step towards using ternary QDs for diagnostic and guided therapy for prostate cancer.


Assuntos
Neoplasias da Próstata/diagnóstico , Prostatite/diagnóstico , Pontos Quânticos/análise , Staphylococcus aureus/isolamento & purificação , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/patologia , Feminino , Histiocitoma Fibroso Maligno/diagnóstico , Histiocitoma Fibroso Maligno/patologia , Humanos , Índio/química , Masculino , Neoplasias Mamárias Animais/diagnóstico , Neoplasias Mamárias Animais/patologia , Camundongos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Prostatite/diagnóstico por imagem , Prostatite/patologia , Pontos Quânticos/química , Selênio/química , Prata/química , Staphylococcus aureus/patogenicidade , Sulfetos/química , Água/química , Compostos de Zinco/química
7.
Nanotechnology ; 31(39): 395501, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32531766

RESUMO

We herein report a novel eco-friendly method for the fluorescent sensing of Cr (III) ions using green synthesized glutathione (GSH) capped water soluble AgInS2-ZnS (AIS-ZnS) quantum dots (QDs). The as-synthesized AIS-ZnS QDs were speherical in shape with average diameter of ∼2.9 nm and exhibited bright yellow emission. The fluorimetric analyses showed that, compared to Cr (VI) ions and other 20 metal ions across the periodic table, AIS-ZnS QDs selectively detected Cr (III) ions via fluorescent quenching. In addition, AIS-ZnS QDs fluorescent nanoprobes exhibited selective detection of Cr (III) ions in the mixture of interfering divalent metal ions such as Cu (II), Pb (II), Hg (II), Ni (II). The mechanism of Cr (III) sensing investigated using HRTEM and FTIR revealed that the binding of Cr (III) ions with the GSH capping group resulted in the aggregation of QDs followed by fluorescence quenching. The limit of detection of Cr (III) ions was calculated to be 0.51 nM. The present method uses cadmium free QDs and paves a greener way for selective determination of Cr (III) ions in the midst of other ions in aqueous solutions.

8.
J Fluoresc ; 30(6): 1331-1335, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32813189

RESUMO

CuInS2 (CIS) quantum dots (QDs) are known to be ideal fluorophores based on their low toxicity and tunable emission. However, due to low quantum yield (QY) and photostability, the surface is usually passivated by a higher bandgap shell (e.g. ZnS). This always resulted in a blue-shifted emission position which is not usually favourable for biological imaging. To address this problem, we herein report the passivation of green synthesized near infra-red emitting glutathione (GSH) capped CuInS2 QDs using different concentration of sodium alginate (SA) at different temperatures. The as-synthesized QDs are small (~ 3.2 nm), highly crystalline and emitted in the near infra-red region. The optical results showed a 36% increase in photostability and a 2-fold increase in quantum yield at ratio 1:8 (SA: CIS) which is suitable for prolonged biological imaging applications. Transmission electron microscope and X-ray diffraction (XRD) analyses showed that the materials are highly crystalline without any change in shape and size after passivation with the biopolymer. Graphical Abstract.


Assuntos
Alginatos/química , Cobre/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Índio/química , Pontos Quânticos/química , Técnicas de Química Sintética , Glutationa/química , Química Verde , Temperatura
9.
Luminescence ; 35(2): 187-195, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31766074

RESUMO

We here in report the synthesis of gold nanoparticles (AuNPs) using a Crinum macowanii bulb water extract. The as-synthesized AuNPs were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and a zeta potential-sizer. The results showed that the as-synthesized AuNPs were crystalline and mostly spherical in shape with a small mixture of triangular, tetrahedral, hexagonal, octagonal, and diamond shapes. The as-synthesized AuNPs together with those synthesized by conventional methods were subsequently used as enhancers for the luminol signal in blood detection. It was noted that the AuNPs synthesized from the Crinum macowanii bulb water extract could enhance the chemiluminescence signal for blood detection by luminol to the same extent as AuNPs prepared by conventional methods. Furthermore, both types of AuNPs served as fluorescence enhancers for blood detection when luminol was replaced with the bulb water extract.


Assuntos
Crime , Crinum/química , Ouro/química , Luminol/análise , Nanopartículas Metálicas/química , Extratos Vegetais/química , Humanos , Luminescência
10.
Drug Dev Ind Pharm ; 46(8): 1219-1229, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32643446

RESUMO

OBJECTIVE: The main objective of this work was to formulate a nanodispersion containing grape seed extract and analyzed its release profile, antioxidant potential of the prepared formulations. METHODS: The grape seed extract (GSE) containing proanthocyanidins (PC's) has been dispersed in polymer matrix soluplus (SOLU) by the freeze-drying method. The morphological analysis was carried out using atomic force microscopy (AFM), scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The in-vitro release of the nanodispersion formulations was evaluated by simulated intestinal fluid (SIF). The antioxidant activity of GSE and the formulation were evaluated by employing various in-vitro assays such as 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2, 2-diphenyl-1- picrylhydrazyl (DPPH), Ferric reducing antioxidant power (FRAP) and peroxidation inhibiting activity. RESULTS: The formulation FIII (1:5) resulted in a stable formulation with a higher loading efficiency of 95.36%, a particle size of 69.90 nm, a polydispersity index of 0.154 and a zeta potential value of -82.10 mV. The antioxidant efficiency of GSE-SOLU evaluated by DPPH was found to be 96.7%. The ABTS and FRAP model exhibited a dose-dependent scavenging activity. Linoleic model of FIII formulation and GSE exhibited a 66.14 and 86.58% inhibition respectively at 200 µg/l. CONCLUSIONS: The main reason for excellent scavenging activity of the formulations can be attributed to the presence of monomeric, dimeric, oligomeric procyanidins and the phenolic group. The present work denotes that GSE constitutes a good source of PC's and will be useful in the prevention and treatment of free radical related diseases.


Assuntos
Antioxidantes/farmacologia , Extrato de Sementes de Uva/farmacologia , Polietilenoglicóis/farmacologia , Polivinil/farmacologia , Extrato de Sementes de Uva/química , Polietilenoglicóis/química , Polivinil/química
11.
Phys Chem Chem Phys ; 21(21): 11424-11434, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31111834

RESUMO

We present our effort on an efficient way of tuning the nonlinear absorption mechanisms in ultra-small CdSe based quantum dots by implementing core-shell and core/multi-shell architectures. Depending on the size, architecture and composition of the QDs, these materials exhibited resonant and near-resonant nonlinear optical absorption properties such as saturable (SA) and reverse saturable (RSA) absorption for 5 ns pulses of 532 nm. These QDs exhibited a non-monotonic dependence of the effective two-photon absorption coefficient (ß) under nanosecond excitation with a maximum value for a thinner shell. We obtained a nonlinear absorption enhancement of an order of magnitude by adopting the core-shell architecture compared to their individual counterparts. Interestingly, CdSe QDs exhibit SA and/or RSA depending on their size and show a switching over from SA to RSA as the input intensity increases. We explained the enhanced nonlinear absorption in core-shell QDs compared to their individual counterparts in view of enhanced local fields associated with the core-shell structure. Thus, the present nanostructured materials are excellent candidates as saturable absorbers and optical limiters.

12.
Phys Chem Chem Phys ; 21(17): 8709-8720, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30888349

RESUMO

Multiferroics that permit manipulation of the magnetization vector exclusively by electric fields have spawned extensive interest for memory and logic device applications. In line with this understanding, we herein report the encapsulation of non-ferroelectric magnesium ferrite (MgFe2O4) nanoparticles in a ferroelectric shell of BaTiO3 to produce a system with engineered dielectric, magnetic, magneto-electric and ferroelectric properties. The interface effect on the strain transfer was observed to strongly influence the magneto-electric coupling and the electric and magnetic properties of the system. The model polyhedral image of MgFe2O4@BaTiO3 has helped to get an insight into the core-shell structure. The multiferroicity induced by the excellent coupling between the ferroelectric and magnetostrictive phases at the core-shell interface unlocks wide prospects for device downscaling and information storage applications. The influence of magnetostrictive stress on the magneto-electric coupling effects and domain dynamics was further studied using transmission electron microscopy (TEM) and atomic force microscopy images. Interestingly, the realization of a superparamagnetic multiferroic system has been a breakthrough and facilitates ultra high density magnetic data storage technologies. Evidence for spontaneous polarization and the ferroelectric trait exhibited by the multiferroic samples was revealed from the P-E hysteresis loop. The investigation of defect evolution in the system was carried out using positron annihilation lifetime spectroscopy (PALS) and coincidence Doppler broadening spectroscopy (CDBS) of annihilation radiation and the studies revealed thermal diffusion of positrons into the interfacial regions within the core-shell structure and the "formation and pick-off annihilation of orthopositronium atoms". It is concluded that interface engineering is a strong means for manipulation of the magnetic, dielectric and magneto-electric properties in multiferroic heterostructures for high density electrical energy and magnetic data storage.

13.
Molecules ; 24(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340553

RESUMO

The synthesis and application of porphyrins has seen a huge shift towards research in porphyrin bio-molecular based systems in the past decade. The preferential localization of porphyrins in tumors, as well as their ability to generate reactive singlet oxygen and low dark toxicities has resulted in their use in therapeutic applications such as photodynamic therapy. However, their inherent lack of bio-distribution due to water insolubility has shifted research into porphyrin-nanomaterial conjugated systems to address this challenge. This has broadened their bio-applications, viz. bio-sensors, fluorescence tracking, in vivo magnetic resonance imaging (MRI), and positron emission tomography (PET)/CT imaging to photo-immuno-therapy just to highlight a few. This paper reviews the unique theranostic role of porphyrins in disease diagnosis and therapy. The review highlights porphyrin conjugated systems and their applications. The review ends by bringing current challenges and future perspectives of porphyrin based conjugated systems and their respective applications into light.


Assuntos
Glicoconjugados/síntese química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fármacos Fotossensibilizantes/síntese química , Porfirinas/síntese química , Animais , Glicoconjugados/farmacocinética , Glicoconjugados/farmacologia , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Neoplasias/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacocinética , Porfirinas/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Nanomedicina Teranóstica/métodos , Água/química , Água/metabolismo
14.
Molecules ; 24(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277423

RESUMO

Antibiotics are commonly used to control, treat, or prevent bacterial infections, however bacterial resistance to all known classes of traditional antibiotics has greatly increased in the past years especially in hospitals rendering certain therapies ineffective. To limit this emerging public health problem, there is a need to develop non-incursive, non-toxic, and new antimicrobial techniques that act more effectively and quicker than the current antibiotics. One of these effective techniques is antibacterial photodynamic therapy (aPDT). This review focuses on the application of porphyrins in the photo-inactivation of bacteria. Mechanisms of bacterial resistance and some of the current 'greener' methods of synthesis of meso-phenyl porphyrins are discussed. In addition, significance and limitations of aPDT are also discussed. Furthermore, we also elaborate on the current clinical applications and the future perspectives and directions of this non-antibiotic therapeutic strategy in combating infectious diseases.


Assuntos
Antibacterianos/farmacologia , Fotoquimioterapia , Porfirinas/farmacologia , Animais , Antibacterianos/efeitos adversos , Antibacterianos/química , Bactérias/efeitos dos fármacos , Humanos , Luz , Fotoquimioterapia/efeitos adversos , Porfirinas/efeitos adversos , Porfirinas/química
15.
Sensors (Basel) ; 18(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304820

RESUMO

We report the preparation of poly (propylene imine) dendrimer (PPI) and CdTe/CdSe/ZnSe quantum dots (QDs) as a suitable platform for the development of an enzyme-based electrochemical cholesterol biosensor with enhanced analytical performance. The mercaptopropionic acid (MPA)-capped CdTe/CdSe/ZnSe QDs was synthesized in an aqueous phase and characterized using photoluminescence (PL) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-ray power diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy. The absorption and emission maxima of the QDs red shifted as the reaction time and shell growth increased, indicating the formation of CdTe/CdSe/ZnSe QDs. PPI was electrodeposited on a glassy carbon electrode followed by the deposition (by deep coating) attachment of the QDs onto the PPI dendrimer modified electrode using 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS) as a coupling agent. The biosensor was prepared by incubating the PPI/QDs modified electrode into a solution of cholesterol oxidase (ChOx) for 6 h. The modified electrodes were characterized by voltammetry and impedance spectroscopy. Since efficient electron transfer process between the enzyme cholesterol oxidase (ChOx) and the PPI/QDs-modified electrode was achieved, the cholesterol biosensor (GCE/PPI/QDs/ChOx) was able to detect cholesterol in the range 0.1⁻10 mM with a detection limit (LOD) of 0.075 mM and sensitivity of 111.16 µA mM-1 cm-2. The biosensor was stable for over a month and had greater selectivity towards the cholesterol molecule.

16.
J Environ Sci (China) ; 64: 264-275, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29478648

RESUMO

We herein report the removal of amodiaquine, an emerging drug contaminant from aqueous solution using [Zn2(fum)2(bpy)] and [Zn4O(bdc)3] (fum=fumaric acid; bpy=4,4-bipyridine; bdc=benzene-1,4-dicarboxylate) metal-organic frameworks (MOFs) as adsorbents. The adsorbents were characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, and powder X-ray diffraction (PXRD). Adsorption process for both adsorbents were found to follow the pseudo-first-order kinetics, and the adsorption equilibrium data fitted best into the Freundlich isotherm with the R2 values of 0.973 and 0.993 obtained for [Zn2(fum)2(bpy)] and [Zn4O(bdc)3] respectively. The maximum adsorption capacities foramodiaquine in this study were found to be 0.478 and 47.62mg/g on the [Zn2(fum)2(bpy)] and [Zn4O(bdc)3] MOFs respectively, and were obtained at pH of 4.3 for both adsorbents. FT-IR spectroscopy analysis of the MOFs after the adsorption process showed the presence of the drug. The results of the study showed that the prepared MOFs could be used for the removal of amodiaquine from wastewater.


Assuntos
Amodiaquina/análise , Estruturas Metalorgânicas/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Adsorção , Amodiaquina/química , Ácidos Carboxílicos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Difração de Raios X , Zinco/química
17.
Molecules ; 21(6)2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27314316

RESUMO

We herein report for the first time the synthesis and analgesic properties of silver nanoparticles (Ag-NPs) using buchu plant extract. The as-synthesised Ag-NPs at different temperatures were characterised by UV-Vis spectroscopy, Fourier transform infra-red spectroscopy (FTIR) and transmission transform microscopy (TEM) to confirm the formation of silver nanoparticles. Phytochemical screening of the ethanolic extract revealed the presence of glycosides, proteins, tannins, alkaloids, flavonoids and saponins. The absorption spectra showed that the synthesis is temperature and time dependent. The TEM analysis showed that the as-synthesised Ag-NPs are polydispersed and spherical in shape with average particle diameter of 19.95 ± 7.76 nm while the FTIR results confirmed the reduction and capping of the as-synthesised Ag-NPs by the phytochemicals present in the ethanolic extract. The analgesic study indicated that the combined effect of the plant extract and Ag-NPs is more effective in pain management than both the aspirin drug and the extract alone.


Assuntos
Analgésicos/química , Nanopartículas Metálicas/química , Extratos Vegetais/administração & dosagem , Alcaloides/química , Analgésicos/administração & dosagem , Animais , Flavonoides/química , Glicosídeos/química , Nanopartículas Metálicas/administração & dosagem , Camundongos , Extratos Vegetais/química , Proteínas/química , Rutaceae/química , Saponinas/química , Prata/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Taninos/química
18.
Chemosphere ; 355: 141751, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522674

RESUMO

Green synthesized magnetic nanoparticles (MNPs) linked with activated charcoal (AC) (AC/Fe3O4 NCs) were exploited for methylene blue (MB) confiscation in this study. The AC/Fe3O4 NCs produced were characterized using TEM, FTIR, UV/Vis and XRD spectrometry. The Response-Surface-Methodology (RSM) was utilized to improve the experimental data for the MB sorption to AC/Fe3O4 NCs, with 20 experimental runs implemented through a central composite design (CCD) to assess the effect of sorption factors-initial MB concentration, pH and sorbent dosage effects on the response (removal-effectiveness). The quadratic model was discovered to ideally describe the sorption process, with an R2 value of 0.9857. The theoretical prediction of the experimental data using the Artificial-Neural-Network (ANN) model showed that the Levenberg-Marquardt (LM) had a better performance criterion. Comparison between the modelled experimental and predicted data showed also that the LM algorithm had a high R2 of 0.9922, which showed NN model applicability for defining the sorption of MB to AC/Fe3O4 NCs with practical precision. The results of the non-linear fitting (NLF) of both isotherm and kinetic models, showed that the sorption of MB to AC/Fe3O4 NCs was perfectly described using the pseudo-second-order (PSOM) and Freundlich (FRHM) models. The estimated optimum sorption capacity was 455 mg g-1. Thermodynamically, the sorption of MB to AC/Fe3O4 NCs was shown to be non-spontaneous and endothermic.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Carvão Vegetal/química , Azul de Metileno/química , Adsorção , Fenômenos Magnéticos , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
19.
Heliyon ; 9(5): e15904, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37187900

RESUMO

Herein, we reported the use of N-doped green-emitting carbon quantum dots (N-CQDs) as a fluorescent probe for determining of Fe3+ ions in Solanum tuberosum for the first time. The N-CQDs were synthesised through an efficient, one-step, and safe hydrothermal technique using citric acid as the carbon source and glutamine as a novel nitrogen source. The temporal evolution of the optical properties was investigated by varying the synthetic conditions with respect to temperature (160 °C, 180 °C, 200 °C, 220 °C and 240 °C) and citric acid: glutamine precursor ratio (1:1, 1:1.5, l.2,1:3 and 1:4). The N-CQDs was characterised using Fourier-Transform Infra-red Spectroscopy (FTIR) High-resolution transmission electron microscope (HRTEM), ultraviolet-visible spectroscopy (UV-vis) and X-Ray diffraction analysis (XRD) while its stability was evaluated in different media; NaCl, Roswell Park Memorial Institute (RPMI) and Phosphate Buffered Saline (PBS), and at different pHs. The N-CQDs displayed green (525 nm) emission and were spherical with an average particle diameter of 3.41 ± 0.76 nm. The FTIR indicated carboxylic, amino, and hydroxyl functional groups. The as-synthesised N-CQDs were stable in NaCl (up to 1 M), RPMI, and PBS without any significant change in its fluorescent intensity. The pH evaluation showed pHs 6 and 7 as the optimum pHs, while the fluorometric analysis showed selectivity towards Fe 3+ in the presence and absence of interfering ions. The detection limit of 1.05 µM was calculated, and the photoluminescence mechanism revealed static quenching. The as-synthesised N-CQDs was used as a fluorescent nanoprobe to determine the amount of Fe3+ in Solanum tuberosum (Potatoes) tubers. The result showed a high level of accuracy (92.13-96.20%) when compared with an established standard analytical procedure with excellent recoveries of 99.23-103.9%. We believe the as-synthesised N-CQDs can be utilised as a reliable and fast fluorescence nanoprobe for the determining of Fe3+ ions.

20.
Pharmaceutics ; 15(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004518

RESUMO

Graphene oxide (GO) as a coating material for gold nanorods (AuNRs) has gained interest in reducing toxicity and improving the photothermal profiling of AuNRs. However, there is still a challenge regarding the storage of colloidal suspensions of GO-coated AuNRs (GO@AuNRs). Hence, the conjugation of GO@AuNRs to meso-tetra-(4-sulfonatophenyl)porphyrin (TPPS4), an anionic water-soluble porphyrin, has been reported to enhance their re-dispensability and improve their phototherapeutic properties. The AuNRs and GO were synthesised using seed-mediated and Hummers' methods, respectively. The GO@AuNRs were conjugated to TPPS4 and characterised using ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy, zeta analyser, dynamic light scattering (DLS), photoluminescence spectroscopy (PL), x-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Fourier-transform infrared spectroscopy (FTIR) before freeze-drying. The results showed that the AuNRs were sandwiched between GO and TPPS4. After freeze-drying, the freeze-dried conjugate was dispensed in deionised water without adding cryoprotectants and its properties were compared to those of the unfreeze-dried conjugate. The results showed that the freeze-dried conjugate contained similar optical properties to the unfreeze-dried conjugate. However, the bare GO@AuNRs showed a change in the optical properties after freeze-drying. These results revealed that porphyrin is an excellent additive to reduce the freeze-drying stress tolerance of GO@AuNRs. The freeze-dried conjugate also showed both singlet oxygen and photothermal properties of GO@AuNRs and porphyrin. These results indicated that the freeze-dried conjugate is a promising dual photodynamic and photothermal agent, and porphyrin can act as a cryoprotectant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA