Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(43): E9163-E9171, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073113

RESUMO

The mostly widely used bronchodilators in asthma therapy are ß2-adrenoreceptor (ß2AR) agonists, but their chronic use causes paradoxical adverse effects. We have previously determined that ß2AR activation is required for expression of the asthma phenotype in mice, but the cell types involved are unknown. We now demonstrate that ß2AR signaling in the airway epithelium is sufficient to mediate key features of the asthmatic responses to IL-13 in murine models. Our data show that inhibition of ß2AR signaling with an aerosolized antagonist attenuates airway hyperresponsiveness (AHR), eosinophilic inflammation, and mucus-production responses to IL-13, whereas treatment with an aerosolized agonist worsens these phenotypes, suggesting that ß2AR signaling on resident lung cells modulates the asthma phenotype. Labeling with a fluorescent ß2AR ligand shows the receptors are highly expressed in airway epithelium. In ß2AR-/- mice, transgenic expression of ß2ARs only in airway epithelium is sufficient to rescue IL-13-induced AHR, inflammation, and mucus production, and transgenic overexpression in WT mice exacerbates these phenotypes. Knockout of ß-arrestin-2 (ßarr-2-/-) attenuates the asthma phenotype as in ß2AR-/- mice. In contrast to eosinophilic inflammation, neutrophilic inflammation was not promoted by ß2AR signaling. Together, these results suggest ß2ARs on airway epithelial cells promote the asthma phenotype and that the proinflammatory pathway downstream of the ß2AR involves ßarr-2. These results identify ß2AR signaling in the airway epithelium as capable of controlling integrated responses to IL-13 and affecting the function of other cell types such as airway smooth muscle cells.


Assuntos
Asma/etiologia , Eosinófilos/patologia , Células Epiteliais/metabolismo , Pulmão/patologia , Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Asma/patologia , Brônquios/citologia , Modelos Animais de Doenças , Epinefrina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-13/toxicidade , Pulmão/citologia , Metaplasia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais
2.
Drug Metab Dispos ; 44(1): 61-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26470915

RESUMO

The expressions and activities of hepatic drug-metabolizing enzymes and transporters (DMETs) are altered during infection and inflammation. Inflammatory responses in the liver are mediated primarily by Toll-like receptor (TLR)-signaling, which involves recruitment of Toll/interleukin (IL)-1 receptor (TIR) domain containing adaptor protein (TIRAP) and TIR domain containing adaptor inducing interferon (IFN)-ß (TRIF) that eventually leads to induction of proinflammatory cytokines and mitogen-activated protein kinases (MAPKs). Lipopolysaccharide (LPS) activates the Gram-negative bacterial receptor TLR4 and polyinosinic:polycytidylic acid (polyI:C) activates the viral receptor TLR3. TLR4 signaling involves TIRAP and TRIF, whereas TRIF is the only adaptor protein involved in the TLR3 pathway. We have shown previously that LPS-mediated downregulation of DMETs is independent of TIRAP. To determine the role of TRIF, we treated TRIF(+/+) and TRIF(-/-) mice with LPS or polyI:C. LPS downregulated (∼40%-60%) Cyp3a11, Cyp2a4, Ugt1a1, Mrp2 mRNA levels, whereas polyI:C downregulated (∼30%-60%) Cyp3a11, Cyp2a4, Cyp1a2, Cyp2b10, Ugt1a1, Mrp2, and Mrp3 mRNA levels in TRIF(+/+) mice. This downregulation was not attenuated in TRIF(-/-) mice. Induction of cytokines by LPS was observed in both TRIF(+/+) and TRIF(-/-) mice. Cytokine induction was delayed in polyI:C-treated TRIF(-/-) mice, indicating that multiple mechanisms mediating polyI:C signaling exist. To assess the role of MAPKs, primary hepatocytes were pretreated with specific inhibitors before treatment with LPS/polyI:C. We found that only the c-jun-N-terminal kinase (JNK) inhibitor attenuated the down-regulation of DMETs. These results show that TRIF-independent pathways can be involved in the downregulation of DMETs through TLR4 and 3. JNK-dependent mechanisms likely mediate this downregulation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Hepatócitos/enzimologia , Fígado/enzimologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Células Cultivadas , Sistema Enzimático do Citocromo P-450/genética , Citocinas/genética , Citocinas/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucuronosiltransferase/genética , Hepatócitos/efeitos dos fármacos , Isoenzimas , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Poli I-C/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Receptor 3 Toll-Like/agonistas , Receptor 4 Toll-Like/agonistas
3.
Proc Natl Acad Sci U S A ; 106(7): 2435-40, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19171883

RESUMO

Chronic regular use of beta(2)-adrenoceptor (beta(2)-AR) agonists in asthma is associated with a loss of disease control and increased risk of death. Conversely, we have found that administration of beta(2)-AR inverse agonists results in attenuation of the asthma phenotype in an allergen-driven murine model. Besides antagonizing agonist-induced signaling and reducing signaling by empty receptors, beta-AR inverse agonists can also activate signaling by novel pathways. To determine the mechanism of the beta-AR inverse agonists, we compared the asthma phenotype in beta(2)-AR-null and wild-type mice. Antigen challenge of beta(2)-AR-null mice produced results similar to what was observed with chronic beta(2)-AR inverse agonist treatment, namely, reductions in mucous metaplasia, airway hyperresponsiveness (AHR), and inflammatory cells in the lungs. These results indicate that the effects of beta(2)-AR inverse agonists are caused by inhibition of beta(2)-AR signaling rather than by the induction of novel signaling pathways. Chronic administration of alprenolol, a beta-blocker without inverse agonist properties, did not attenuate the asthma phenotype, suggesting that it is signaling by empty receptors, rather than agonist-induced beta(2)-AR signaling, that supports the asthma phenotype. In conclusion, our results demonstrate that, in a murine model of asthma, beta(2)-AR signaling is required for the full development of three cardinal features of asthma: mucous metaplasia, AHR, and the presence of inflammatory cells in the lungs.


Assuntos
Asma/genética , Asma/patologia , Receptores Adrenérgicos beta 2/metabolismo , Alprenolol/farmacologia , Animais , Broncoconstritores/farmacologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Humanos , Pulmão/patologia , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais
4.
Am J Respir Cell Mol Biol ; 38(3): 256-62, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18096872

RESUMO

Single-dose administration of beta-adrenoceptor agonists produces bronchodilation and inhibits airway hyperresponsiveness (AHR), and is the standard treatment for the acute relief of asthma. However, chronic repetitive administration of beta-adrenoceptor agonists may increase AHR, airway inflammation, and risk of death. Based upon the paradigm shift that occurred with the use of beta-blockers in congestive heart failure, we previously determined that chronic administration of beta-blockers decreased AHR in a murine model of asthma. To elucidate the mechanisms for the beneficial effects of beta-blockers, we examined the effects of chronic administration of several beta-adrenoceptor ligands in a murine model of allergic asthma. Administration of beta-blockers resulted in a reduction in total cell counts, eosinophils, and the cytokines IL-13, IL-10, IL-5, and TGF-beta1 in bronchoalveolar lavage, and attenuated epithelial mucin content and morphologic changes. The differences in mucin content also occurred if the beta-blockers were administered only during the ovalbumin challenge phase, but administration of beta-blockers for 7 days was not as effective as administration for 28 days. These results indicate that in a murine model of asthma, chronic administration of beta-blockers reduces inflammation and mucous metaplasia, cardinal features of asthma that may contribute to airflow obstruction and AHR. Similar to heart failure, our results provide a second disease model in which beta-blockers producing an acutely detrimental effect may provide a therapeutically beneficial effect with chronic administration.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Asma/tratamento farmacológico , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Mucinas/metabolismo , Administração Oral , Antagonistas Adrenérgicos beta/administração & dosagem , Animais , Asma/fisiopatologia , Feminino , Bombas de Infusão , Injeções Intraperitoneais , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nadolol/administração & dosagem , Nadolol/farmacologia , Ovalbumina , Propanolaminas/administração & dosagem , Propanolaminas/farmacologia , Organismos Livres de Patógenos Específicos
5.
PLoS One ; 10(7): e0132559, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161982

RESUMO

Mucus hypersecretion by airway epithelium is a hallmark of inflammation in allergic asthma and results in airway narrowing and obstruction. Others have shown that administration a TH2 cytokine, IL-13 is sufficient to cause mucus hypersecretion in vivo and in vitro. Asthma therapy often utilizes ß2-adrenoceptor (ß2AR) agonists, which are effective acutely as bronchodilators, however chronic use may lead to a worsening of asthma symptoms. In this study, we asked whether ß2AR signaling in normal human airway epithelial (NHBE) cells affected mucin production in response to IL-13. This cytokine markedly increased mucin production, but only in the presence of epinephrine. Mucin production was blocked by ICI-118,551, a preferential ß2AR antagonist, but not by CGP-20712A, a preferential ß1AR antagonist. Constitutive ß2AR activity was not sufficient for IL-13 induced mucin production and ß-agonist-induced signaling is required. A clinically important long-acting ß-agonist, formoterol, was as effective as epinephrine in potentiating IL-13 induced MUC5AC transcription. IL-13 induced mucin production in the presence of epinephrine was significantly reduced by treatment with selective inhibitors of ERK1/2 (FR180204), p38 (SB203580) and JNK (SP600125). Replacement of epinephrine with forskolin + IBMX resulted in a marked increase in mucin production in NHBE cells in response to IL-13, and treatment with the inhibitory cAMP analogue Rp-cAMPS decreased mucin levels induced by epinephrine + IL-13. Our findings suggest that ß2AR signaling is required for mucin production in response to IL-13, and that mitogen activated protein kinases and cAMP are necessary for this effect. These data lend support to the notion that ß2AR-agonists may contribute to asthma exacerbations by increasing mucin production via activation of ß2ARs on epithelial cells.


Assuntos
Brônquios/citologia , Epinefrina/farmacologia , Células Epiteliais/metabolismo , Interleucina-13/farmacologia , Mucina-5AC/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Bovinos , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
6.
Life Sci ; 89(1-2): 57-64, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21620874

RESUMO

AIM: Our aim is to investigate the molecular mechanism of regulation of gene expression of drug metabolizing enzymes (DMEs) and transporters in diet-induced obesity. MAIN METHODS: Adult male CD1 mice were fed diets containing 60% kcal fat (HFD) or 10% kcal fat (LFD) for 14 weeks. RNA levels of hepatic DMEs, transporters and their regulatory nuclear receptors (NRs) were analyzed by real-time PCR. Activation of cell-signaling components (JNK and NF-κΒ) and pro-inflammatory cytokines (IL-1ß, IL-6 and TNFα) were measured in the liver. Finally, the pharmacodynamics of drugs metabolized by DMEs was measured to determine the clinical relevance of our findings. KEY FINDINGS: RNA levels of the hepatic phase I (Cyp3a11, Cyp2b10, Cyp2a4) and phase II (Ugt1a1, Sult1a1, Sultn) enzymes were reduced ~30-60% in HFD compared to LFD mice. RNA levels of Cyp2e1, Cyp1a2 and the drug transporters, multidrug resistance proteins, (Mrp)2, Mrp3 and multidrug resistant gene (Mdr)1b were unaltered in HFD mice. Gene expression of the NRs, PXR and CAR and nuclear protein levels of RXRα was reduced in HFD mice. Cytokines, JNK and NF-κΒ were induced in HFD mice. Thus reduction in hepatic gene expression in obesity may be modulated by cross-talk between NRs and inflammation-induced cell-signaling. Sleep time of Midazolam (Cyp3a substrate) was prolonged in HFD mice, while Zoxazolamine (Cyp1a2 and Cyp2e1 substrate)-induced sleep time was unaltered. SIGNIFICANCE: This study demonstrates that gene-specific reductions in DMEs can affect specific drugs metabolized by these enzymes, thus providing a rationale to monitor the effectiveness of drug therapy in obese individuals.


Assuntos
Gorduras na Dieta/efeitos adversos , Enzimas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Obesidade/fisiopatologia , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Arilsulfotransferase/metabolismo , Receptor Constitutivo de Androstano , Citocromo P-450 CYP3A/metabolismo , Família 2 do Citocromo P450 , Citocinas/metabolismo , Glucuronosiltransferase/metabolismo , Immunoblotting , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Midazolam/farmacocinética , Midazolam/farmacologia , NF-kappa B/metabolismo , Obesidade/metabolismo , Receptor de Pregnano X , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sono/efeitos dos fármacos , Esteroide Hidroxilases/metabolismo , Zoxazolamina/farmacocinética , Zoxazolamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA