Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucl Med Biol ; 132-133: 108909, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599144

RESUMO

BACKGROUND: Radioligand therapy using alpha emitters has gained more and more prominence in the last decade. Despite continued efforts to identify new appropriate radionuclides, the combination of 225Ac/213Bi remains among the most promising. Bismuth-213 has been employed in clinical trials in combination with appropriate vectors to treat patients with various forms of cancer, such as leukaemia, bladder cancer, neuroendocrine tumours, melanomas, gliomas, or lymphomas. However, the half-life of 213Bi (T½ = 46 min) implies that its availability for clinical use is limited to hospitals possessing a 225Ac/213Bi radionuclide generator, which is still predominantly scarce. We investigated a new Ac/Bi generator system based on using the composite sorbent α-ZrP-PAN (zirconium(IV) phosphate as active component and polyacrylonitrile as matrix). The developed 225Ac/213Bi generator was subjected to long-term testing after its development. The elution profile was determined and the elution yield, the contamination of the eluate with the parent 225Ac and the contamination of the eluate with the column material were monitored over time. RESULTS: The high activity (75 MBq of parent 225Ac) generator with a length of 75 mm and a diameter of 4 mm containing the composite sorbent α-ZrP-PAN with a particle size of 0.8 to 1.0 mm as the stationary phase, eluted with a mixture of 10 mM DTPA in 5 mM nitric acid, provided 213Bi with yields ranging from 77 % to 96 % in 2.8 mL of eluate, with parent 225Ac contamination in the order of 10-3 %, up to twenty days of use. CONCLUSION: All the results of the monitored parameters indicate that the composite sorbent α-ZrP-PAN based separation system for the elution of 213Bi is a very promising and functional solution.


Assuntos
Actínio , Partículas alfa , Bismuto , Radioisótopos , Bismuto/química , Partículas alfa/uso terapêutico , Radioisótopos/química , Actínio/química , Zircônio/química , Geradores de Radionuclídeos , Radioquímica/métodos , Radioquímica/instrumentação
2.
Materials (Basel) ; 16(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687424

RESUMO

Zirconium phosphate (ZrP), especially its alpha allotropic modification, appears to be a very promising sorbent material for the sorption and separation of various radionuclides due to its properties such as an extremely high ion exchange capacity and good radiation stability. Actinium-225 and its daughter nuclide 213Bi are alpha emitting radioisotopes of high interest for application in targeted alpha therapy of cancer. Thus, the main aim of this paper is to study the sorption of 225Ac on the α-ZrP surface and its kinetics, while the kinetics of the sorption is studied using natEu as a non-radioactive homologue of 225Ac. The sorption properties of α-ZrP were tested in an acidic environment (hydrochloric and nitric acid) using batch sorption experiments and characterized using equilibrium weight distribution coefficients Dw (mL/g). The modeling of the experimental data shows that the kinetics of 225Ac sorption on the surface of α-ZrP can be described using a film diffusion model (FD). The equilibrium weight distribution coefficient Dw for 225Ac in both hydrochloric and nitric acid reached the highest values in the concentration range 5.0-7.5 mM (14,303 ± 153 and 65,272 ± 612 mL/g, respectively). Considering the results obtained in radioactive static sorption experiments with 225Ac and in non-radioactive kinetic experiments with natEu, α-ZrP seems to be a very promising material for further construction of a 225Ac/213Bi generator.

3.
Materials (Basel) ; 16(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36902874

RESUMO

The overall need for the preparation of new medicinal radionuclides has led to the fast development of new sorption materials, extraction agents, and separation methods. Inorganic ion exchangers, mainly hydrous oxides, are the most widely used materials for the separation of medicinal radionuclides. One of the materials that has been studied for a long time is cerium dioxide, a competitive sorption material for the broadly used titanium dioxide. In this study, cerium dioxide was prepared through calcination of ceric nitrate and fully characterized using X-ray powder diffraction (XRPD), infrared spectrometry (FT-IR), scanning and transmission electron microscopy (SEM and TEM), thermogravimetric and differential thermal analysis (TG and DTA), dynamic light scattering (DLS), and analysis of surface area. In order to estimate the sorption mechanism and capacity of the prepared material, characterization of surface functional groups was carried out using acid-base titration and mathematical modeling. Subsequently, the sorption capacity of the prepared material for germanium was measured. It can be stated that the prepared material is prone to exchange anionic species in a wider range of pH than titanium dioxide. This characteristic makes the material superior as a matrix in 68Ge/68Ga radionuclide generators, and its suitability should be further studied in batch, kinetic, and column experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA