Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 17922-17931, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858960

RESUMO

Miniaturization of optical devices is a modern trend essential for optoelectronics, optical sensing, optical computing and other branches of science and technology. To satisfy this trend, optical materials with a small footprint are required. Here we show that extremely thin, flat, nanostructured gold films made of highly oriented single-crystalline gold quantum-dots can provide elements of topological photonics in visible light and be used as high-index dielectric materials in the infrared part of the spectra. We measure and theoretically confirm the presence of topological darkness and associated phase singularities in studied gold films of thickness of below 10 nm placed on MgO substrates in the red part of the spectrum. At telecom wavelengths, the fabricated gold metasurface behaves as a dielectric with the refractive index of n≈2.75 and the absorption coefficient of k≈0.005.

2.
Nano Lett ; 21(18): 7448-7456, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34498884

RESUMO

A concept of spin plasmon, a collective mode of spin-density, in strongly correlated electron systems has been proposed since the 1930s. It is expected to bridge between spintronics and plasmonics by strongly confining the photon energy in the subwavelength scale within single magnetic-domain to enable further miniaturizing devices. However, spin plasmon in strongly correlated electron systems is yet to be realized. Herein, we present a new spin correlated-plasmon at room temperature in novel Mott-like insulating highly oriented single-crystalline gold quantum-dots (HOSG-QDs). Interestingly, the spin correlated-plasmon is tunable from the infrared to visible, accompanied by spectral weight transfer yielding a large quantum absorption midgap state, disappearance of low-energy Drude response, and transparency. Supported with theoretical calculations, it occurs due to an interplay of surprisingly strong electron-electron correlations, s-p hybridization and quantum confinement in the s band. The first demonstration of the high sensitivity of spin correlated-plasmon in surface-enhanced Raman spectroscopy is also presented.

4.
Sci Rep ; 14(1): 5377, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438537

RESUMO

We investigate, through XPS and AFM, the pseudo layer-by-layer growth of Ge native oxide across Ge(001), (110) and (111) surfaces in ambient environment. More significantly, our study reveals a universal set of valence and conduction band offset (VBO and CBO) values observed for Ge(001), Ge(110), and Ge(111) surfaces as a function of Ge-oxide concentration. We find that the band offsets appear to be the same across these low-index Ge surfaces i.e., for Ge-oxide/Ge heterostructures with the same Ge-oxide overlayer concentration or thickness. In contrast, different oxidation rates for Ge(001), Ge(110), and Ge(111) surfaces were observed, where the oxidation rate is fastest for Ge(001), compared to Ge(110) and Ge(111). This can be attributed to the different number of unsatisfied Ge dangling bonds (2 vs 1) associated to the respective ideal Ge surface in forming Ge-oxide. Thus, at any given oxidation time, the oxide concentration or thickness for each type of low index Ge surface will be different. This in turn will lead to different band offset value observed for each type of Ge surface. More significantly, we show that while oxidation rates can differ from different Ge surface-types, the band offset values can be estimated simply based on the Ge-oxide concentration regardless of Ge surface type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA