Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 134(5): 482-501, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38323474

RESUMO

BACKGROUND: Mitochondrial dysfunction is a primary driver of cardiac contractile failure; yet, the cross talk between mitochondrial energetics and signaling regulation remains obscure. Ponatinib, a tyrosine kinase inhibitor used to treat chronic myeloid leukemia, is among the most cardiotoxic tyrosine kinase inhibitors and causes mitochondrial dysfunction. Whether ponatinib-induced mitochondrial dysfunction triggers the integrated stress response (ISR) to induce ponatinib-induced cardiotoxicity remains to be determined. METHODS: Using human induced pluripotent stem cells-derived cardiomyocytes and a recently developed mouse model of ponatinib-induced cardiotoxicity, we performed proteomic analysis, molecular and biochemical assays to investigate the relationship between ponatinib-induced mitochondrial stress and ISR and their role in promoting ponatinib-induced cardiotoxicity. RESULTS: Proteomic analysis revealed that ponatinib activated the ISR in cardiac cells. We identified GCN2 (general control nonderepressible 2) as the eIF2α (eukaryotic translation initiation factor 2α) kinase responsible for relaying mitochondrial stress signals to trigger the primary ISR effector-ATF4 (activating transcription factor 4), upon ponatinib exposure. Mechanistically, ponatinib treatment exerted inhibitory effects on ATP synthase activity and reduced its expression levels resulting in ATP deficits. Perturbed mitochondrial function resulting in ATP deficits then acts as a trigger of GCN2-mediated ISR activation, effects that were negated by nicotinamide mononucleotide, an NAD+ precursor, supplementation. Genetic inhibition of ATP synthase also activated GCN2. Interestingly, we showed that the decreased abundance of ATP also facilitated direct binding of ponatinib to GCN2, unexpectedly causing its activation most likely because of a conformational change in its structure. Importantly, administering an ISR inhibitor protected human induced pluripotent stem cell-derived cardiomyocytes against ponatinib. Ponatinib-treated mice also exhibited reduced cardiac function, effects that were attenuated upon systemic ISRIB administration. Importantly, ISRIB does not affect the antitumor effects of ponatinib in vitro. CONCLUSIONS: Neutralizing ISR hyperactivation could prevent or reverse ponatinib-induced cardiotoxicity. The findings that compromised ATP production potentiates GCN2-mediated ISR activation have broad implications across various cardiac diseases. Our results also highlight an unanticipated role of ponatinib in causing direct activation of a kinase target despite its role as an ATP-competitive kinase inhibitor.


Assuntos
Imidazóis , Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Piridazinas , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Cardiotoxicidade/patologia , Proteômica , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/toxicidade , Doenças Mitocondriais/patologia , Trifosfato de Adenosina
2.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474152

RESUMO

Necroptosis, a form of necrosis, and alterations in mitochondrial dynamics, a coordinated process of mitochondrial fission and fusion, have been implicated in the pathogenesis of cardiovascular diseases. This study aimed to determine the role of mitochondrial morphology in canonical necroptosis induced by a combination of TNFα and zVAD (TNF/zVAD) in H9c2 cells, rat cardiomyoblasts. Time-course analyses of mitochondrial morphology showed that mitochondria were initially shortened after the addition of TNF/zVAD and then their length was restored, and the proportion of cells with elongated mitochondria at 12 h was larger in TNF/zVAD-treated cells than in non-treated cells (16.3 ± 0.9% vs. 8.0 ± 1.2%). The knockdown of dynamin-related protein 1 (Drp1) and fission 1, fission promoters, and treatment with Mdivi-1, a Drp-1 inhibitor, had no effect on TNF/zVAD-induced necroptosis. In contrast, TNF/zVAD-induced necroptosis was attenuated by the knockdown of mitofusin 1/2 (Mfn1/2) and optic atrophy-1 (Opa1), proteins that are indispensable for mitochondrial fusion, and the attenuation of necroptosis was not canceled by treatment with Mdivi-1. The expression of TGFß-activated kinase (TAK1), a negative regulator of RIP1 activity, was upregulated and the TNF/zVAD-induced RIP1-Ser166 phosphorylation, an index of RIP1 activity, was mitigated by the knockdown of Mfn1/2 or Opa1. Pharmacological TAK1 inhibition attenuated the protection afforded by Mfn1/2 and Opa1 knockdown. In conclusion, the inhibition of mitochondrial fusion increases TAK1 expression, leading to the attenuation of canonical necroptosis through the suppression of RIP1 activity.


Assuntos
Dinâmica Mitocondrial , Necroptose , Ratos , Animais , Regulação para Baixo , Necrose/metabolismo , Mitocôndrias/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
J Transl Med ; 21(1): 21, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635690

RESUMO

BACKGROUND: Growth arrest-specific 6 (GAS6) is a vitamin K-dependent protein related to inflammation, fibrosis, as well as platelet function. Genetic ablation of GAS6 in mice protects against cardiac hypertrophy and dysfunction. Nonetheless, the association between plasma GAS6 levels and acute heart failure (AHF) patients is still unknown. METHODS: We measured plasma GAS6 concentrations in 1039 patients with AHF who were enrolled in the DRAGON-HF trial (NCT03727828). Mean follow-up of the study was 889 days. The primary endpoint is all-cause death. RESULTS: In total, there were 195 primary endpoints of all-cause death and 135 secondary endpoints of cardiovascular death during the mean follow-up duration of 889 days. The higher levels of GAS6 were associated with higher rates of all-cause and cardiovascular death (P < 0.05). Baseline plasma GAS6 levels were still strongly correlated with clinical outcomes in different models after adjustment for clinical factors and N-terminal pro-brain natriuretic peptide (NT-proBNP, P < 0.05). GAS6 could further distinguish the risks of clinical outcomes based on NT-proBNP measurement. CONCLUSION: Elevated plasma GAS6 levels were associated with an increased risk of all-cause and cardiovascular death in patients with AHF. Trial registration NCT03727828 (DRAGON-HF trial) clinicaltrials.gov.


Assuntos
Insuficiência Cardíaca , Peptídeos e Proteínas de Sinalização Intercelular , Biomarcadores , Insuficiência Cardíaca/diagnóstico , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Prognóstico , Volume Sistólico , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue
5.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443187

RESUMO

Background: New treatments are needed to reduce myocardial infarct size (MI) and prevent heart failure (HF) following acute myocardial infarction (AMI), which are the leading causes of death and disability worldwide. Studies in rodent AMI models showed that genetic and pharmacological inhibition of mitochondrial fission, induced by acute ischemia and reperfusion, reduced MI size. Whether targeting mitochondrial fission at the onset of reperfusion is also cardioprotective in a clinically-relevant large animal AMI model remains to be determined. Methods: Adult pigs (30-40 kg) were subjected to closed-chest 90-min left anterior descending artery ischemia followed by 72 h of reperfusion and were randomized to receive an intracoronary bolus of either mdivi-1 (1.2 mg/kg, a small molecule inhibitor of the mitochondrial fission protein, Drp1) or vehicle control, 10-min prior to reperfusion. The left ventricular (LV) size and function were both assessed by transthoracic echocardiography prior to AMI and after 72 h of reperfusion. MI size and the area-at-risk (AAR) were determined using dual staining with Tetrazolium and Evans blue. Heart samples were collected for histological determination of fibrosis and for electron microscopic analysis of mitochondrial morphology. Results: A total of 14 pigs underwent the treatment protocols (eight control and six mdivi-1). Administration of mdivi-1 immediately prior to the onset of reperfusion did not reduce MI size (MI size as % of AAR: Control 49.2 ± 8.6 vs. mdivi-1 50.5 ± 11.4; p = 0.815) or preserve LV systolic function (LV ejection fraction %: Control 67.5 ± 0.4 vs. mdivi-1 59.6 ± 0.6; p = 0.420), when compared to vehicle control. Similarly, there were no differences in mitochondrial morphology or myocardial fibrosis between mdivi-1 and vehicle control groups. Conclusion: Our pilot study has shown that treatment with mdivi-1 (1.2 mg/kg) at the onset of reperfusion did not reduce MI size or preserve LV function in the clinically-relevant closed-chest pig AMI model. A larger study, testing different doses of mdivi-1 or using a more specific Drp1 inhibitor are required to confirm these findings.


Assuntos
Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Quinazolinonas/uso terapêutico , Animais , Modelos Animais de Doenças , Ecocardiografia , Feminino , Dinâmica Mitocondrial/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Projetos Piloto , Suínos , Função Ventricular Esquerda/efeitos dos fármacos
6.
Cardiovasc Drugs Ther ; 31(1): 87-107, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28190190

RESUMO

Mitochondrial health is critically dependent on the ability of mitochondria to undergo changes in mitochondrial morphology, a process which is regulated by mitochondrial shaping proteins. Mitochondria undergo fission to generate fragmented discrete organelles, a process which is mediated by the mitochondrial fission proteins (Drp1, hFIS1, Mff and MiD49/51), and is required for cell division, and to remove damaged mitochondria by mitophagy. Mitochondria undergo fusion to form elongated interconnected networks, a process which is orchestrated by the mitochondrial fusion proteins (Mfn1, Mfn2 and OPA1), and which enables the replenishment of damaged mitochondrial DNA. In the adult heart, mitochondria are relatively static, are constrained in their movement, and are characteristically arranged into 3 distinct subpopulations based on their locality and function (subsarcolemmal, myofibrillar, and perinuclear). Although the mitochondria are arranged differently, emerging data supports a role for the mitochondrial shaping proteins in cardiac health and disease. Interestingly, in the adult heart, it appears that the pleiotropic effects of the mitochondrial fusion proteins, Mfn2 (endoplasmic reticulum-tethering, mitophagy) and OPA1 (cristae remodeling, regulation of apoptosis, and energy production) may play more important roles than their pro-fusion effects. In this review article, we provide an overview of the mitochondrial fusion and fission proteins in the adult heart, and highlight their roles as novel therapeutic targets for treating cardiac disease.


Assuntos
Cardiopatias/metabolismo , Cardiopatias/terapia , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Miocárdio/metabolismo , Animais , Apoptose , Metabolismo Energético , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Mitocôndrias Cardíacas/patologia , Mitofagia , Miocárdio/patologia , Necrose , Transdução de Sinais
7.
Handb Exp Pharmacol ; 240: 251-279, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27844171

RESUMO

Mitochondria are dynamic in nature and are able to shift their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins - mitofusins 1 and 2 (Mfn1 and 2), and optic atrophy 1 (Opa1) as well as the mitochondrial fission proteins - dynamin-related peptide 1 (Drp1) and fission protein 1 (Fis1). Despite having a unique spatial arrangement, cardiac mitochondria have been implicated in a variety of disorders including ischemia-reperfusion injury (IRI), heart failure, diabetes, and pulmonary hypertension. In this chapter, we review the influence of mitochondrial dynamics in these cardiac disorders as well as their potential as therapeutic targets in tackling cardiovascular disease.


Assuntos
Cardiopatias/tratamento farmacológico , Dinâmica Mitocondrial/efeitos dos fármacos , Animais , Apoptose , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/fisiopatologia , Cardiopatias/fisiopatologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Mitocôndrias Cardíacas/fisiologia , Dinâmica Mitocondrial/fisiologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/fisiopatologia
8.
J Biol Chem ; 290(36): 22061-75, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26183775

RESUMO

Transfer of cardiac progenitor cells (CPCs) improves cardiac function in heart failure patients. However, CPC function is reduced with age, limiting their regenerative potential. Aging is associated with numerous changes in cells including accumulation of mitochondrial DNA (mtDNA) mutations, but it is unknown how this impacts CPC function. Here, we demonstrate that acquisition of mtDNA mutations disrupts mitochondrial function, enhances mitophagy, and reduces the replicative and regenerative capacities of the CPCs. We show that activation of differentiation in CPCs is associated with expansion of the mitochondrial network and increased mitochondrial oxidative phosphorylation. Interestingly, mutant CPCs are deficient in mitochondrial respiration and rely on glycolysis for energy. In response to differentiation, these cells fail to activate mitochondrial respiration. This inability to meet the increased energy demand leads to activation of cell death. These findings demonstrate the consequences of accumulating mtDNA mutations and the importance of mtDNA integrity in CPC homeostasis and regenerative potential.


Assuntos
Proliferação de Células/genética , DNA Mitocondrial/genética , Mutação , Células-Tronco/metabolismo , Animais , Western Blotting , Diferenciação Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Miocárdio/citologia , Miocárdio/metabolismo , Biogênese de Organelas , Fosforilação Oxidativa , Consumo de Oxigênio/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Basic Res Cardiol ; 111(1): 7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26667317

RESUMO

Recent advances in basic cardiovascular research as well as their translation into the clinical situation were the focus at the last "New Frontiers in Cardiovascular Research meeting". Major topics included the characterization of new targets and procedures in cardioprotection, deciphering new players and inflammatory mechanisms in ischemic heart disease as well as uncovering microRNAs and other biomarkers as versatile and possibly causal factors in cardiovascular pathogenesis. Although a number of pathological situations such as ischemia-reperfusion injury or atherosclerosis can be simulated and manipulated in diverse animal models, also to challenge new drugs for intervention, patient studies are the ultimate litmus test to obtain unequivocal information about the validity of biomedical concepts and their application in the clinics. Thus, the open and bidirectional exchange between bench and bedside is crucial to advance the field of ischemic heart disease with a particular emphasis of understanding long-lasting approaches in cardioprotection.


Assuntos
Doenças Cardiovasculares , Pesquisa Translacional Biomédica , Animais , Humanos
10.
Basic Res Cardiol ; 111(6): 69, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27743118

RESUMO

In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome.


Assuntos
Cardiologia/tendências , Doenças Cardiovasculares , Nanomedicina Teranóstica/tendências , Animais , Cardiologia/métodos , Humanos
11.
J Mol Cell Cardiol ; 78: 23-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446182

RESUMO

Ischemic heart disease (IHD) remains the leading cause of death and disability worldwide. For patients presenting with an acute myocardial infarction, the most effective treatment for limiting myocardial infarct (MI) size is timely reperfusion. However, in addition to the injury incurred during acute myocardial ischemia, the process of reperfusion can itself induce myocardial injury and cardiomyocyte death, termed 'myocardial reperfusion injury', the combination of which can be referred to as acute ischemia-reperfusion injury (IRI). Crucially, there is currently no effective therapy for preventing this form of injury, and novel cardioprotective therapies are therefore required to protect the heart against acute IRI in order to limit MI size and preserve cardiac function. The opening of the mitochondrial permeability transition pore (MPTP) in the first few minutes of reperfusion is known to be a critical determinant of IRI, contributing up to 50% of the final MI size. Importantly, preventing its opening at this time using MPTP inhibitors, such as cyclosporin-A, has been reported in experimental and clinical studies to reduce MI size and preserve cardiac function. However, more specific and novel MPTP inhibitors are required to translate MPTP inhibition as a cardioprotective strategy into clinical practice. In this article, we review the role of the MPTP as a mediator of acute myocardial IRI and as a therapeutic target for cardioprotection. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Transporte Biológico , Humanos , Precondicionamento Isquêmico Miocárdico , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
12.
J Mol Cell Cardiol ; 74: 340-52, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24984146

RESUMO

Fetal cardiomyocyte adaptation to low levels of oxygen in utero is incompletely understood, and is of interest as hypoxia tolerance is lost after birth, leading to vulnerability of adult cardiomyocytes. It is known that cardiac mitochondrial morphology, number and function change significantly following birth, although the underlying molecular mechanisms and physiological stimuli are undefined. Here we show that the decrease in cardiomyocyte HIF-signaling in cardiomyocytes immediately after birth acts as a physiological switch driving mitochondrial fusion and increased postnatal mitochondrial biogenesis. We also investigated mechanisms of ATP generation in embryonic cardiac mitochondria. We found that embryonic cardiac cardiomyocytes rely on both glycolysis and the tricarboxylic acid cycle to generate ATP, and that the balance between these two metabolic pathways in the heart is controlled around birth by the reduction in HIF signaling. We therefore propose that the increase in ambient oxygen encountered by the neonate at birth acts as a key physiological stimulus to cardiac mitochondrial adaptation.


Assuntos
Ventrículos do Coração/metabolismo , Hipóxia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Adaptação Fisiológica , Trifosfato de Adenosina/biossíntese , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Glicólise/efeitos dos fármacos , Glicólise/genética , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Oxigênio/farmacologia , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
13.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345053

RESUMO

Pigment epithelium-derived factor (PEDF) could bind to vascular endothelial growth factor receptor 2 (VEGFR2) and inhibit its activation induced by VEGF. But how PEDF affects VEGFR2 pathway is still poorly understood. In this study, we elucidated the precise mechanism underlying the interaction between PEDF and VEGFR2, and subsequently corroborated our findings using a rat AMI model. PEDF prevented endocytosis of VE-cadherin induced by hypoxia, thereby protecting the endothelium integrity. A three-dimensional model of the VEGFR2-PEDF complex was constructed by protein-protein docking method. The results showed that the VEGFR2-PEDF complex was stable during the simulation. Hydrogen bonds, binding energy and binding modes were analyzed during molecular dynamics simulations, which indicated that hydrogen bonds and hydrophobic interactions were important for the recognition of VEGFR2 with PEDF. In addition, the results from exudation of fibrinogen suggested that PEDF inhibits vascular leakage in acute myocardial infarction and confirmed the critical role of key amino acids in the regulation of endothelial cell permeability. This observation is also supported by echocardiography studies showing that the 34mer peptide sustained cardiac function during acute myocardial infarction. Besides, PEDF and 34mer could inhibit the aggregation of myofiber in the heart and promoted the formation of a dense cell layer in cardiomyocytes, which suggested that PEDF and 34mer peptide protect against AMI-induced cardiac dysfunction. These results suggest that PEDF inhibits the phosphorylation of downstream proteins, thereby preventing vascular leakage, which provides a new therapeutic direction for the treatment of acute myocardial infarction.Communicated by Ramaswamy H. Sarma.

15.
Int J Stem Cells ; 16(2): 123-134, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36581369

RESUMO

Objective: The heart contains a pool of c-kit+ progenitor cells which is believed to be able to regenerate. The differentiation of these progenitor cells is reliant on different physiological cues. Unraveling the underlying signals to direct differentiation of progenitor cells will be beneficial in controlling progenitor cell fate. In this regard, the role of the mitochondria in mediating cardiac progenitor cell fate remains unclear. Specifically, the association between changes in mitochondrial morphology with the differentiation status of c-kit+ CPCs remains elusive. In this study, we investigated the relationship between mitochondrial morphology and the differentiation status of c-kit+ progenitor cells. Methods and Results: c-kit+ CPCs were isolated from 2-month-old male wild-type FVB mice. To activate differentiation, CPCs were incubated in α-minimal essential medium containing 10 nM dexamethasone for up to 7 days. To inhibit Drp1-mediated mitochondrial fragmentation, either 10 µM or 50 µM mdivi-1 was administered once at Day 0 and again at Day 2 of differentiation. To inhibit calcineurin, either 1 µM or 5 µM ciclosporin-A (CsA) was administered once at Day 0 and again at Day 2 of differentiation. Dexamethasone-induced differentiation of c-kit+ progenitor cells is aligned with fragmentation of the mitochondria via a calcineurin-Drp1 pathway. Pharmacologically inhibiting mitochondrial fragmentation retains the undifferentiated state of the c-kit+ progenitor cells. Conclusions: The findings from this study provide an alternative view of the role of mitochondrial fusion-fission in the differentiation of cardiac progenitor cells and the potential of pharmacologically manipulating the mitochondria to direct progenitor cell fate.

16.
Antioxid Redox Signal ; 38(7-9): 599-618, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36053670

RESUMO

Significance: Although corona virus disease 2019 (COVID-19) has now gradually been categorized as an endemic, the long-term effect of COVID-19 in causing multiorgan disorders, including a perturbed cardiovascular system, is beginning to gain attention. Nonetheless, the underlying mechanism triggering post-COVID-19 cardiovascular dysfunction remains enigmatic. Are cardiac mitochondria the key to mediating cardiac dysfunction post-severe acute respiratory syndrome coronavirus 2 (post-SARS-CoV-2) infection? Recent Advances: Cardiovascular complications post-SARS-CoV-2 infection include myocarditis, myocardial injury, microvascular injury, pericarditis, acute coronary syndrome, and arrhythmias (fast or slow). Different types of myocardial damage or reduced heart function can occur after a lung infection or lung injury. Myocardial/coronary injury or decreased cardiac function is directly associated with increased mortality after hospital discharge in patients with COVID-19. The incidence of adverse cardiovascular events increases even in recovered COVID-19 patients. Disrupted cardiac mitochondria postinfection have been postulated to lead to cardiovascular dysfunction in the COVID-19 patients. Further studies are crucial to unravel the association between SARS-CoV-2 infection, mitochondrial dysfunction, and ensuing cardiovascular disorders (CVD). Critical Issues: The relationship between COVID-19 and myocardial injury or cardiovascular dysfunction has not been elucidated. In particular, the role of the cardiac mitochondria in this association remains to be determined. Future Directions: Elucidating the cause of cardiac mitochondrial dysfunction post-SARS-CoV-2 infection may allow a deeper understanding of long COVID-19 and resulting CVD, thus providing a potential therapeutic target. Antioxid. Redox Signal. 38, 599-618.


Assuntos
COVID-19 , Doenças Cardiovasculares , Cardiopatias , Miocardite , Humanos , COVID-19/complicações , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Doenças Cardiovasculares/etiologia , Miocardite/complicações , Miocardite/terapia , Mitocôndrias
17.
Zool Res ; 44(3): 591-603, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37147910

RESUMO

Large animal models of cardiac ischemia-reperfusion are critical for evaluation of the efficacy of cardioprotective interventions prior to clinical translation. Nonetheless, current cardioprotective strategies/interventions formulated in preclinical cardiovascular research are often limited to small animal models, which are not transferable or reproducible in large animal models due to different factors such as: (i) complex and varied features of human ischemic cardiac disease (ICD), which are challenging to mimic in animal models, (ii) significant differences in surgical techniques applied, and (iii) differences in cardiovascular anatomy and physiology between small versus large animals. This article highlights the advantages and disadvantages of different large animal models of preclinical cardiac ischemic reperfusion injury (IRI), as well as the different methods used to induce and assess IRI, and the obstacles faced in using large animals for translational research in the settings of cardiac IR.


Assuntos
Traumatismo por Reperfusão Miocárdica , Humanos , Animais , Traumatismo por Reperfusão Miocárdica/veterinária , Modelos Animais de Doenças
18.
Phytomedicine ; 113: 154743, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893672

RESUMO

BACKGROUND: Pyroptosis is an inflammatory form of cell death that has been implicated in various infectious and non-infectious diseases. Gasdermin family proteins are the key executors of pyroptotic cell death, thus they are considered as novel therapeutic targets for inflammatory diseases. However, only limited gasdermin specific inhibitors have been identified to date. Traditional Chinese medicines have been applied in clinic for centuries and exhibit potential in anti-inflammation and anti-pyroptosis. We attempted to find candidate Chinese botanical drugs which specifically target gasdermin D (GSDMD) and inhibit pyroptosis. METHODS: In this study, we performed high-throughput screening using a botanical drug library to identify pyroptosis specific inhibitors. The assay was based on a cell pyroptosis model induced by lipopolysaccharides (LPS) and nigericin. Cell pyroptosis levels were then evaluated by cell cytotoxicity assay, propidium iodide (PI) staining and immunoblotting. We then overexpressed GSDMD-N in cell lines to investigate the direct inhibitory effect of the drug to GSDMD-N oligomerization. Mass spectrometry studies were applied to identify the active components of the botanical drug. Finally, a mouse model of sepsis and a mouse model of diabetic myocardial infarction were constructed to verify the protective effect of the drug in disease models of inflammation. RESULTS: High-throughput screening identified Danhong injection (DHI) as a pyroptosis inhibitor. DHI remarkably inhibited pyroptotic cell death in a murine macrophage cell line and bone marrow-derived macrophages. Molecular assays demonstrated the direct blockade of GSDMD-N oligomerization and pore formation by DHI. Mass spectrometry studies identified the major active components of DHI, and further activity assays revealed salvianolic acid E (SAE) as the most potent molecule among these components, and SAE has a strong binding affinity to mouse GSDMD Cys192. We further demonstrated the protective effects of DHI in mouse sepsis and mouse myocardial infarction with type 2 diabetes. CONCLUSION: These findings provide new insights for drug development from Chinese herbal medicine like DHI against diabetic myocardial injury and sepsis through blocking GSDMD-mediated macrophage pyroptosis.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Infarto do Miocárdio , Sepse , Camundongos , Animais , Piroptose , Medicamentos de Ervas Chinesas/farmacologia , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular , Sepse/tratamento farmacológico
19.
Cardiovasc Res ; 119(10): 1997-2013, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267414

RESUMO

AIMS: Novel cancer therapies leading to increased survivorship of cancer patients have been negated by a concomitant rise in cancer therapies-related cardiovascular toxicities. Sunitinib, a first line multi-receptor tyrosine kinase inhibitor, has been reported to cause vascular dysfunction although the initiating mechanisms contributing to this side effect remain unknown. Long non-coding RNAs (lncRNAs) are emerging regulators of biological processes in endothelial cells (ECs); however, their roles in cancer therapies-related vascular toxicities remain underexplored. METHODS AND RESULTS: We performed lncRNA expression profiling to identify potential lncRNAs that are dysregulated in human-induced pluripotent stem cell-derived ECs (iPSC-ECs) treated with sunitinib. We show that the lncRNA hyaluronan synthase 2 antisense 1 (HAS2-AS1) is significantly diminished in sunitinib-treated iPSC-ECs. Sunitinib was found to down-regulate HAS2-AS1 by an epigenetic mechanism involving hypermethylation. Depletion of HAS2-AS1 recapitulated sunitinib-induced detrimental effects on iPSC-ECs, whereas CRISPR-mediated activation of HAS2-AS1 reversed sunitinib-induced dysfunction. We confirmed that HAS2-AS1 stabilizes the expression of its sense gene HAS2 via an RNA/mRNA heteroduplex formation. Knockdown of HAS2-AS1 led to reduced synthesis of hyaluronic acid (HA) and up-regulation of ADAMTS5, an enzyme involved in extracellular matrix degradation, resulting in disruption of the endothelial glycocalyx which is critical for ECs. In vivo, sunitinib-treated mice showed reduced coronary flow reserve, accompanied by a reduction in Has2os and degradation of the endothelial glycocalyx. Finally, we identified that treatment with high molecular-weight HA can prevent the deleterious effects of sunitinib both in vitro and in vivo by preserving the endothelial glycocalyx. CONCLUSIONS: Our findings highlight the importance of lncRNA-mediated regulation of the endothelial glycocalyx as an important determinant of sunitinib-induced vascular toxicity and reveal potential novel therapeutic avenues to attenuate sunitinib-induced vascular dysfunction.


Assuntos
RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Glicocálix/metabolismo , Células Endoteliais/metabolismo , Sunitinibe/toxicidade , Sunitinibe/metabolismo
20.
Biomed Res Int ; 2022: 6889278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203484

RESUMO

Background: Mitochondria fuse to form elongated networks which are more tolerable to stress and injury. Ischemic pre- and postconditioning (IPC and IPost, respectively) are established cardioprotective strategies in the preclinical setting. Whether IPC and IPost modulates mitochondrial morphology is unknown. We hypothesize that the protective effects of IPC and IPost may be conferred via preservation of mitochondrial network. Methods: IPC and IPost were applied to the H9c2 rat myoblast cells, isolated adult primary murine cardiomyocytes, and the Langendorff-isolated perfused rat hearts. The effects of IPC and IPost on cardiac cell death following ischemia-reperfusion injury (IRI), mitochondrial morphology, and gene expression of mitochondrial-shaping proteins were investigated. Results: IPC and IPost successfully reduced cardiac cell death and myocardial infarct size. IPC and IPost maintained the mitochondrial network in both H9c2 and isolated adult primary murine cardiomyocytes. 2D-length measurement of the 3 mitochondrial subpopulations showed that IPC and IPost significantly increased the length of interfibrillar mitochondria (IFM). Gene expression of the pro-fusion protein, Mfn1, was significantly increased by IPC, while the pro-fission protein, Drp1, was significantly reduced by IPost in the H9c2 cells. In the primary cardiomyocytes, gene expression of both Mfn1 and Mfn2 were significantly upregulated by IPC and IPost, while Drp1 was significantly downregulated by IPost. In the Langendorff-isolated perfused heart, gene expression of Drp1 was significantly downregulated by both IPC and IPost. Conclusion: IPC and IPost-mediated upregulation of pro-fusion proteins (Mfn1 and Mfn2) and downregulation of pro-fission (Drp1) promote maintenance of the interconnected mitochondrial network, ultimately conferring cardioprotection against IRI.


Assuntos
Pós-Condicionamento Isquêmico , Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Mitocôndrias/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA