Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 41(4): 673-685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472609

RESUMO

PURPOSE: The purpose of this study was to develop a simulation model for the pharmacokinetics (PK) of drugs undergoing enterohepatic circulation (EHC) with consideration to the environment in the gastrointestinal tract in the fed state in humans. The investigation particularly focused on the necessity of compensating for the permeability rate constant in the reabsorption process in consideration of drug entrapment in bile micelles. METHODS: Meloxicam and ezetimibe were used as model drugs. The extent of the entrapment of drugs inside bile micelles was evaluated using the solubility ratio of Fed State Simulated Intestinal Fluid version 2 (FeSSIF-V2) to Fasted State Simulated Intestinal Fluid version 2 (FaSSIF-V2). Prediction accuracy was evaluated using the Mean Absolute Percentage Error (MAPE) value, calculated from the observed and predicted oral PK profiles. RESULTS: The solubilization of ezetimibe by bile micelles was clearly observed while that of meloxicam was not. Assuming that only drugs in the free fraction of micelles permeate through the intestinal membrane, PK simulation for ezetimibe was performed in both scenarios with and without compensation by the permeation rate constant. The MAPE value of Zetia® tablet, containing ezetimibe, was lower with compensation than without compensation. By contrast, Mobic® tablet, containing meloxicam, showed a relatively low MAPE value even without compensation. CONCLUSION: For drugs which undergo EHC and can be solubilized by bile micelles, compensating for the permeation rate constant in the reabsorption process based on the free fraction ratio appears an important factor in increasing the accuracy of PK profile prediction.


Assuntos
Circulação Êntero-Hepática , Micelas , Humanos , Meloxicam , Solubilidade , Ezetimiba , Comprimidos
2.
Biopharm Drug Dispos ; 45(3): 117-126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646776

RESUMO

This study aimed to control the oral absorption of cyclosporine A (CsA) with the use of a mucosal drug delivery system (mDDS). Mucopenetrating nanocarriers (MP/NCs) and mucoadhesive nanocarriers (MA/NCs) were prepared by flash nanoprecipitation employing polystyrene-block-poly(ethylene glycol) and polystyrene-block-poly(N,N-dimethyl aminoethyl methacrylate), respectively. Their particle distribution in the rat gastrointestinal tract were visualized by fluorescent imaging. Plasma concentrations were monitored after oral administration of CsA-loaded MP/NCs (MP/CsA) and MA/NCs (MA/CsA) to rats. MP/NCs and MA/NCs had a particle size below 200 nm and ζ-potentials of 4 and 40 mV, respectively. The results from in vitro experiments demonstrated mucopenetration of MP/NCs and mucoadhesion of MA/NCs. Confocal laser scanning microscopic images showed diffusion of MP/NCs in the gastrointestinal mucus towards epithelial cells and localization of MA/NCs on the surface of the gastrointestinal mucus layer. In a pH 6.8 solution, rapid and sustained release of CsA were observed for MP/CsA and MA/CsA, respectively. After oral dosing (10 mg-CsA/kg) to rats, amorphous CsA powder exhibited a time to maximum plasma concentration (Tmax) of 3.4 h, maximum plasma concentration (Cmax) of 0.12 µg/mL, and bioavailability of 0.7%. Compared with amorphous CsA powder, MP/CsA shortened Tmax by 1.1 to 2.3 h and increased the bioavailability by 43-fold to 30.1%, while MA/CsA prolonged Tmax by 3.4 to 6.8 h with Cmax and bioavailability of 0.65 µg/mL and 11.7%, respectively. These pharmacokinetic behaviors would be explained by their diffusion and release properties modulated by polymeric surface modification. The mDDS approach is a promising strategy for the pharmacokinetic control of orally administered CsA.


Assuntos
Ciclosporina , Sistemas de Liberação de Medicamentos , Ratos Sprague-Dawley , Animais , Ciclosporina/farmacocinética , Ciclosporina/administração & dosagem , Masculino , Administração Oral , Ratos , Imunossupressores/farmacocinética , Imunossupressores/administração & dosagem , Imunossupressores/sangue , Portadores de Fármacos/química , Mucosa Intestinal/metabolismo , Nanopartículas/química , Disponibilidade Biológica , Tamanho da Partícula
3.
Pharm Dev Technol ; 29(5): 477-481, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656248

RESUMO

This study was the first attempt to visualize pulmonary retention of nanocarriers (NCs) with the use of the P2 probe, a new water-initiated aggregation-caused fluorescent-quenching (ACQ) dye, for the development of NCs with long-lasting retention in the respiratory system (RS). Flash nanoprecipitation was used to fabricate mucopenetrating NCs (MP/NCs) and mucoadhesive NCs (MA/NCs). Both NCs were labeled with the P2 probe, and their distribution and retention in RS were visualized after intratracheal administration to rats. MP/NCs and MA/NCs had a mean diameter below 200 nm and ζ-potential of 0 and 48 mV, respectively. MA/NCs showed three times stronger interactions with mucin than MP/NCs, resulting in significantly lower diffusiveness in mucus. The P2 probe exhibited an ACQ effect with negligible rekindling in simulated lung fluid, and the spectroscopic data suggested applicability to reliable imaging of insufflated NCs. In confocal laser scanning microscopic and in vivo imaging system images of the rat RS, MA/NCs were locally deposited in the respiratory tract and transported toward the pharynx by mucocilliary clearance (MCC). In contrast, MP/NCs diffused in the respiratory mucus were less subject to the influence of MCC. Based on the results from the bioimaging study using the P2 probe, MP/NCs could offer enhanced pulmonary retention of drugs compared with MA/NCs.


Assuntos
Portadores de Fármacos , Nanopartículas , Animais , Ratos , Nanopartículas/química , Portadores de Fármacos/química , Masculino , Ratos Sprague-Dawley , Sistema Respiratório/metabolismo , Sistema Respiratório/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/administração & dosagem
4.
Biopharm Drug Dispos ; 44(6): 387-395, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37526477

RESUMO

The present study was undertaken to develop a self-micellizing solid dispersion (SMSD) of tacrolimus (TAC) to improve the biopharmaceutical properties of TAC. An SMSD formulation of TAC (SMSD/TAC) and amorphous solid dispersion formulation of TAC (ASD/TAC) were prepared with Soluplus® , an amphiphilic copolymer, and hydroxypropyl cellulose, respectively. Physicochemical properties were characterized in terms of morphology, crystallinity, storage stability, interaction of TAC with Soluplus® , and micelle-forming potency; pharmacokinetic behavior was also evaluated in rats. Tacrolimus in both formulations was in an amorphous state. After storage at 40°C/75% relativity humidity for 4 weeks, there were no significant changes in the crystallinity of TAC between nonaged and aged SMSD/TAC, whereas slight recrystallization was observed in aged ASD/TAC. The results of circular dichroism (CD) and infrared spectroscopic analyses were indicative of the potent drug-polymer interaction in SMSD/TAC, possibly leading to the prevention of recrystallization. Compared with other TAC samples, SMSD/TAC exhibited significant improvement in the dissolution behavior of TAC through the immediate formation of fine micelles. After the oral administration of TAC samples (10 mg TAC/kg) to rats, there was marked enhancement in systemic exposure to TAC with both formulations; in particular, SMSD/TAC achieved an increase in bioavailability ca. 20-fold higher than crystalline TAC. The SMSD approach might provide an effective dosage form for TAC with enhanced physicochemical stability and oral absorption.


Assuntos
Polietilenoglicóis , Tacrolimo , Ratos , Animais , Ratos Sprague-Dawley , Solubilidade , Micelas , Disponibilidade Biológica , Administração Oral
5.
Chem Pharm Bull (Tokyo) ; 71(10): 787-791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779081

RESUMO

The aim of this study was to develop a self-micellizing solid dispersion of celecoxib (SMSD/CEL) with enhanced dissolution to suppress a delay in absorption under impairment of gastrointestinal (GI) secretion and motility induced by severe pain. Soluplus®-based SMSD/CEL was prepared by lyophilization and physiochemically characterized. A pharmacokinetic study of orally-dosed CEL samples was carried out in rats with propantheline (PPT)-induced the impairment of GI secretion and motility. SMSD/CEL was micellized in aqueous media with a mean diameter of 153 nm, and it showed improved dissolution behavior of CEL under acidic conditions with 2.1-fold higher dissolved CEL at 120 min than crystalline CEL. SMSD/CEL was found to be in an amorphous state, and there was no significant crystallization even after storage under accelerated conditions for 8 weeks, indicating relatively high storage stability of the amorphous form. Orally-dosed crystalline CEL in PPT-treated rats showed a delayed mean absorption time (MAT) and area under the curve of plasma concentration versus time from 0 to 4 h (AUC0-4) was reduced to 12% compared with that in normal rats, whereas SMSD/CEL suppressed the delay and decrease of absorption in PPT-treated rats. From these findings, SMSD/CEL might be efficacious to suppress poor and delayed absorption of CEL for better pain medication in the presence of impaired GI secretion and motility associated with severe pain.


Assuntos
Motilidade Gastrointestinal , Micelas , Ratos , Animais , Celecoxib/farmacologia , Ratos Sprague-Dawley , Solubilidade , Dor
6.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513199

RESUMO

The aim of the present study was to develop an injectable hydrogel (HG) formulation of fuzapladib sodium (FZP), an animal drug for acute pancreatitis (AP), with the use of polyethyleneoxide (PEO) and polylysine (pLys), a cationic polymer. A mixture of pLys and FZP was added to PEO to prepare an HG formulation, and the formulation was optimized by release test and viscosity measurements. Circular dichroism (CD) and infrared absorption (IR) spectral analyses were applied to clarify the intermolecular interactions between FZP and pLys. The pharmacokinetic behavior of FZP was evaluated after a subcutaneous administration of FZP samples (2.0 mg-FZP/kg) to rats. Although the immediate release of FZP was observed for the HG formulation, the addition of pLys at a 20-fold amount of FZP or higher led to the sustained release of FZP. Considering release behavior, the concentration of pLys was optimized as 100-fold that of FZP in the HG formulation. CD and IR spectroscopic analyses of FZP and/or pLys demonstrated an intermolecular interaction between FZP and pLys, as evidenced by the slight spectral transition. After a subcutaneous administration of HG formulation containing pLys to rats, compared with FZP alone, significant differences were observed in the pharmacokinetic behavior with a decrease of Cmax from 2.3 to 0.9 mg/mL and slower elimination kinetics. HG formulation using pLys might be a viable dosage option for FZP for the treatment of AP in animals.


Assuntos
Pancreatite , Polilisina , Ratos , Animais , Polilisina/química , Hidrogéis , Preparações de Ação Retardada/química , Antígeno-1 Associado à Função Linfocitária , Doença Aguda , Leucócitos
7.
J Sci Food Agric ; 103(6): 2981-2988, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36350072

RESUMO

BACKGROUND: The present study was aimed to develop astaxanthin (AX)-loaded liposomes by the utilization of soybean phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) to improve the nutraceutical properties of AX. AX-loaded liposomes consisting of PC (PC/AX) and LPC (LPC/AX) were evaluated in terms of particle size distribution, morphology, release characteristics, pharmacokinetic behavior, and nephroprotective effects in a rat model of acute kidney injury. RESULTS: PC/AX and LPC/AX had uniform size distributions with a mean particle size of 254 and 148 nm, respectively. Under pH 6.8 conditions, both liposomes exhibited improved dissolution behavior of AX compared with crystalline AX (cAX). In particular, LPC/AX showed a sevenfold higher release of AX than PC/AX. After the oral administration of LPC/AX (33.2 mg AX kg-1 ) to rats, there was a significant increase in systemic exposure to AX, as evidenced by a 15-fold higher AUC0-24 h than PC/AX. However, the oral absorption of AX in the cAX group was negligible. Based on the results of histological analysis and measurement of plasma biomarkers, LPC/AX exhibited improved nephroprotective effects of AX in the rat model of kidney injury. CONCLUSION: From these observations, a strategic application of the LPC-based liposomal approach might be a promising option to improve the nutraceutical properties of AX. © 2022 Society of Chemical Industry.


Assuntos
Lipossomos , Lisofosfatidilcolinas , Ratos , Animais , Lisofosfatidilcolinas/farmacologia , Xantofilas , Tamanho da Partícula , Fosfatidilcolinas
8.
Pharm Dev Technol ; 28(9): 877-883, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828716

RESUMO

The present study aimed to develop solid lipid nanoparticles of lutein (SLN/LT) with improved dissolution behavior and oral absorption. SLN/LT were prepared by a flash nanoprecipitation method using a multi-inlet vortex mixer, and their physicochemical, photochemical, and pharmacokinetic properties were evaluated. The mean particle size of SLN/LT re-dispersed in water was 237 nm, and small spherical particles with no significant aggregation were observed. LT significantly generated singlet oxygen upon exposure to pseudo-sunlight (250 W/m2, 1 h), suggesting its high photoreactivity. The remaining LT in LT solution, crystalline LT, and SLN/LT after irradiation with pseudo-sunlight (250 W/m2, 2 h) were 56.3, 86.7, and 101%, respectively. SLN/LT showed improved dissolution behavior of LT in simulated intestinal fluid, and the dissolved amounts of LT at 2 h were at least 50 times higher than that of crystalline LT. Orally administered SLN/LT (100 mg-LT/kg) exhibited enhanced oral absorption of LT, as evidenced by a relative bioavailability of 3.7 to crystalline LT in rats. SLN/LT may be a promising dosage form for orally available LT supplements, possibly leading to enhanced nutritional functions of LT.


Assuntos
Luteína , Nanopartículas , Ratos , Animais , Lipídeos/química , Nanopartículas/química , Fenômenos Químicos , Tamanho da Partícula , Administração Oral , Disponibilidade Biológica
9.
Mol Pharm ; 19(5): 1468-1476, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35353535

RESUMO

Quercetin (QUE)-loaded poly(lipoic acid) nanoparticles (QUE/pLA) were developed to improve chemical stability in the gastrointestinal (GI) tract, oral bioavailability (BA), and pharmacological properties of QUE. QUE/pLA was prepared by emulsion solvent evaporation with ultrasonication followed by freeze-drying. Its mean particle size was 185 nm, with a high encapsulation efficiency of QUE (84.8%). QUE/pLA exhibited sustained release of QUE with improved dissolution compared with crystalline QUE and significantly enhanced chemical stability under physiological pH in the GI tract. Orally dosed QUE/pLA (50 mg QUE/kg) in rats exhibited significantly prolonged systemic exposure, possibly due to the sustained release of QUE. The oral BAs of QUE in QUE/pLA and crystalline QUE groups were 29 and 0.19%, respectively, suggesting significant enhancement of oral absorbability, likely due to the improved stability and dissolution property of QUE in the GI tracts. In hepatic injury model rats, QUE/pLA (50 mg QUE/kg) led to marked reductions in the plasma biomarker levels of alanine aminotransferase and aspartate aminotransferase by 70 and 46%, respectively, compared with the vehicle group. QUE/pLA also showed improved antioxidant potential as evidenced by the enhanced activities of hepatic glutathione, superoxide dismutase, and a decrease in the level of malondialdehyde, a marker of lipid peroxidation. Based on these findings, QUE/pLA might be a promising option to improve both the nutraceutical and pharmaceutical properties of QUE.


Assuntos
Nanopartículas , Ácido Tióctico , Animais , Disponibilidade Biológica , Preparações de Ação Retardada , Nanopartículas/química , Quercetina/química , Ratos
10.
J Pharmacol Sci ; 148(1): 51-55, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34924129

RESUMO

The present study aimed to characterize and compare ß-adrenoceptors in the rat bladder with those in the heart and lungs of SD rats (8-10 weeks old) using subtype-selective agonists and antagonists in a radioligand binding assay with (-)-[125I]cyanopindolol ([125I]CYP), and also to clarify alterations in ß-adrenoceptors in the bladder of spontaneously hypertensive rats (SHR) at 14 weeks old, from those of Wistar-Kyoto rats (WKY) and Wistar rats at the same age. A radioligand binding assay with [125I]CYP was used to measure ß-adrenoceptor binding activity in rat tissues. Metoprolol exhibited the highest affinity to specific binding sites of [125I]CYP in the rat heart, indicating the dominance of ß1-adrenoceptors. ß3-selective agonists (BRL37344 and CL316243) and antagonist (SR59230A) exhibited higher affinity to specific binding sites of [125I]CYP in the bladder than in the heart and lungs. Furthermore, the binding affinity of the ß2-selective antagonist, ICI118551 was the highest in the bladder. The Bmax of specific [125]CYP binding in the bladder was significantly lower in WKY and SHR than in Wistar rats. The present study provides further evidence for the coexistence of ß2-and ß3-adrenoceptors in the rat bladder, and indicates that ß-adrenoceptor density is lower in the bladders of WKY and SHR.


Assuntos
Pulmão/metabolismo , Miocárdio/metabolismo , Ratos Endogâmicos SHR/metabolismo , Receptores Adrenérgicos beta/metabolismo , Bexiga Urinária/metabolismo , Animais , Ensaio Radioligante/métodos , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Ratos Wistar , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 3/metabolismo
11.
Biopharm Drug Dispos ; 43(3): 89-97, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35322875

RESUMO

This study aimed to develop an oral nanocrystal solid dispersion (nCSD) of fuzapladib (FZP) with enhanced absorbability for the treatment of acute pancreatitis (AP). The hydration properties of crystalline FZP free acid (crystalline FZP) and FZP sodium salt (FZP/Na) were assessed to select a stable crystal form. The nCSD of FZP free acid (nCSD/FZP) was prepared using a multi-inlet vortex mixer and evaluated in terms of physicochemical and pharmacokinetic properties. The results of X-ray powder diffraction analysis indicated that crystalline FZP was stable as an anhydrate, while FZP/Na was converted to its monohydrate at water activity of above 0.2. The nanocrystals in nCSD/FZP were dispersed in hydroxy propyl cellulose-SSL, and their mean particle size were 160 nm with uniform spherical shape. In dissolution testing, nCSD/FZP exhibited rapid dissolution compared with crystalline FZP and reached a saturated concentration of FZP within initial 30 min. After oral administration (2 mg-FZP/kg) to rats, the maximum plasma concentration and bioavailability were 7.3- and 5.2-fold higher for nCSD/FZP than crystalline FZP, respectively, due to improved dissolution by nanosization. In conclusion, nCSD/FZP may be a novel oral dosage form with enhanced absorbability facilitating potent therapeutic effects of FZP for the treatment of AP in animals.


Assuntos
Nanopartículas , Pancreatite , Doença Aguda , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Nanopartículas/química , Tamanho da Partícula , Ratos , Solubilidade
12.
Drug Dev Ind Pharm ; 48(6): 239-246, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35875919

RESUMO

R-α-lipoic acid (RLA) and dihydrolipoic acid (DHLA), a reduced form of RLA, are potent endogenous antioxidants that can reduce oxidative damage. Despite their numerous nutraceutical potentials, clinical applications of RLA are still limited due to its poor solubility and stability problems. This study aimed to develop an RLA-loaded liposome (LIP/RLA) for the improvement of nutraceutical properties. LIP/RLA was developed by a typical solvent injection method. Uniform liposomes of LIP/RLA were observed by transmission electron microscopy, and the mean particle size was calculated to be ∼150 nm from the data of dynamic light scattering. LIP/RLA could prevent the degradation of RLA even under acidic conditions (pH 1.2) possibly due to the encapsulation of RLA into the liposomal structure. In the release test under pH6.8 with lipase, LIP/RLA showed relatively rapid release of RLA, possibly due to the lipolysis of phospholipids by lipase. After the oral administration of LIP/RLA (10 mg-RLA/kg, p.o.) in rats, the systemic exposures of RLA and DHLA increased by 2.8- and 5.8-fold, respectively. In a rat model of acute hepatic injury induced by carbon tetrachloride (CCl4) (0.7 mL-CCl4/kg, p.o.), orally dosed LIP/RLA (3 mg-RLA/kg, p.o.) resulted in 78.7% and 86.4% reductions of plasma alanine aminotransferase, and aspartate aminotransferase, respectively; however, RLA was found to be less effective possibly due to the poor oral absorption. The RLA-loaded liposomal system might be a promising carrier for poorly water-soluble materials with poor stability under acidic conditions, as well as RLA, to improve their oral absorption and nutraceutical properties.


Assuntos
Ácido Tióctico , Animais , Tetracloreto de Carbono , Suplementos Nutricionais , Lipase , Lipossomos , Ratos , Ácido Tióctico/química , Ácido Tióctico/farmacologia
14.
Pharm Dev Technol ; 27(5): 565-571, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35694736

RESUMO

The aim of the present study was to develop and evaluate stabilized injection solutions of fuzapladib sodium hydrate using antioxidants as the stabilizers. To estimate the possible degradation factors and pathways of fuzapladib, forced degradation studies were conducted under thermal, acid, base, oxidative, and light conditions. To select an optimal excipient to stabilize fuzapladib under a solution state, a screening study of antioxidants was carried out to evaluate their effects to inhibit the degradation. The influence of the selected stabilizers on its pharmacokinetic behavior was evaluated in rats after intravenous administration. On the basis of data from the forced degradation study, thermal and oxidative stresses were significant factors accelerating the degradation of fuzapladib. Among eight tested antioxidants, vitamin C (VC) was the most effective stabilizer to suppress the accelerated degradation by heating, as evidenced by 45% inhibition of the degradation. The stabilization effect was enhanced depending on the concentration of VC. After the intravenous administration of fuzapladib (0.5 mg/kg) with or without VC (2.1 mg/kg), there were no significant differences between the pharmacokinetic behaviors of each group. From these findings, VC might be a promising excipient to stabilize the injection solution of fuzapladib without significant influence on its pharmacokinetic behavior.


Assuntos
Ácido Ascórbico , Excipientes , Animais , Antioxidantes/farmacocinética , Oxirredução , Estresse Oxidativo , Ratos
15.
Pharm Res ; 38(12): 2109-2118, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34904203

RESUMO

PURPOSE: This study was undertaken to develop novel mucoadhesive formulations of clofazimine (CFZ), a drug candidate for the treatment of cryptosporidiosis, with the aim of strategic delivery to the small intestine, the main site of the disease parasites. METHODS: CFZ-loaded nanoparticles (nCFZ) coated with non-biodegradable anionic polymer (nCFZ/A) and biodegradable anionic protein complex (nCFZ/dA) were prepared by Flash NanoPrecipitation (FNP) and evaluated for their physicochemical and biopharmaceutical properties. RESULTS: The mean diameters of nCFZ/A and nCFZ/dA were ca. 90 and 240 nm, respectively, and they showed narrow size distributions and negative ζ-potentials. Both formulations showed higher solubility of CFZ in aqueous solution than crystalline CFZ. Despite their improved dispersion behaviors, both formulations exhibited significantly lower diffusiveness than crystalline CFZ in a diffusion test using artificial mucus (AM). Quartz crystal microbalance analysis showed that both formulations clearly interacted with mucin, which appeared to be responsible for their reduced diffusiveness in AM. These results suggest the potent mucoadhesion of nCFZ/A and nCFZ/dA. After the oral administration of CFZ samples (10 mg-CFZ/kg) to rats, nCFZ/dA and nCFZ/A exhibited a prolongation in Tmax by 2 and >9 h, respectively, compared with crystalline CFZ. At 24 h after oral doses of nCFZ/A and nCFZ/dA with mucoadhesion, there were marked increases in the intestinal CFZ concentration (4-7 fold) compared with Lamprene®, a commercial CFZ product, indicating enhanced CFZ exposure in the small intestine. CONCLUSION: The use of FNP may produce mucoadhesive CFZ formulations with improved intestinal exposure, possibly offering enhanced anti-cryptosporidium therapy.


Assuntos
Clofazimina/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas/química , Administração Oral , Animais , Clofazimina/farmacocinética , Criptosporidiose/tratamento farmacológico , Liberação Controlada de Fármacos , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Masculino , Modelos Animais , Ratos , Solubilidade
16.
Biopharm Drug Dispos ; 42(2-3): 78-84, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33400825

RESUMO

The present study was aimed to develop a novel sustained-release formulation for allopurinol (ALP/SR) with the use of a pH-sensitive polymer, hydroxypropyl methylcellulose acetate succinate, to reduce nephrotoxicity. ALP/SR was evaluated in terms of crystallinity, the dissolution profile, pharmacokinetic behavior, and nephrotoxicity in a rat model of nephropathy. Under acidic conditions (pH1.2), sustained release behavior was seen for ALP/SR, although both crystalline ALP and ALP/SR exhibited rapid dissolution at neutral condition. After multiple oral administrations of ALP samples (10 mg-ALP/kg) for 4 days in a rat model of nephropathy, ALP/SR led to a low and sustained plasma concentration of ALP, as evidenced by half the maximum concentration of ALP and a 2.5-fold increase in the half-life of ALP compared with crystalline ALP, possibly due to suppressed dissolution behavior under acidic conditions. Repeated-dosing of ALP/SR resulted in significant reductions in plasma creatinine and blood urea nitrogen levels by 73% and 69%, respectively, in comparison with crystalline ALP, suggesting the low nephrotoxic risk of ALP/SR. From these findings, a strategic SR formulation approach might be an efficacious dosage option for ALP to avoid severe nephrotoxicity in patients with nephropathy.


Assuntos
Alopurinol/farmacocinética , Supressores da Gota/farmacocinética , Metilcelulose/análogos & derivados , Administração Oral , Alopurinol/efeitos adversos , Alopurinol/sangue , Alopurinol/química , Animais , Antineoplásicos , Nitrogênio da Ureia Sanguínea , Cisplatino , Creatinina/sangue , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Supressores da Gota/efeitos adversos , Supressores da Gota/sangue , Supressores da Gota/química , Meia-Vida , Rim/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Masculino , Metilcelulose/química , Metilcelulose/farmacocinética , Ratos Sprague-Dawley
17.
Biopharm Drug Dispos ; 42(5): 226-233, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33843079

RESUMO

The present study was designed to develop a self-emulsifying drug delivery system (SEDDS) of (R)-α-lipoic acid (RLA) to improve the physicochemical and nutraceutical properties of RLA. RLA/SEDDS was prepared using medium-chain triglycerides, Tween 80, and polyethylene glycol 400 as oil, surfactant, and co-surfactant, respectively. The preferable composition of SEDDS was selected according to a pseudo-ternary phase diagram for improved emulsification properties, and its physicochemical and pharmacokinetic properties were evaluated. RLA/SEDDS showed the immediate formation of fine micelles with a mean droplet size of approximately 260 nm when introduced into aqueous media. In simulated gastric fluid, this system could significantly improve the dissolution behavior of RLA and prevent the degradation of RLA, possibly due to the encapsulation of RLA into the emulsion structure. Following the oral administration of RLA/SEDDS (10 mg RLA/kg) in rats, systemic exposure to RLA and dihydrolipoic acid (DHLA), a reduced form of RLA, increased by 7- and 3-fold, respectively. The improved dissolution and gastric stability of RLA could contribute to enhancing systemic exposure to RLA and DHLA after oral administration. From these findings, RLA/SEDDS might be an efficacious dosage option for improving the oral bioavailability as well as nutraceutical properties of RLA.


Assuntos
Antioxidantes/administração & dosagem , Sistemas de Liberação de Medicamentos , Ácido Tióctico/administração & dosagem , Administração Oral , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Disponibilidade Biológica , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Emulsões , Suco Gástrico/química , Concentração de Íons de Hidrogênio , Masculino , Ratos Sprague-Dawley , Solubilidade , Ácido Tióctico/sangue , Ácido Tióctico/química , Ácido Tióctico/farmacocinética
18.
Drug Dev Ind Pharm ; 47(5): 694-698, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33950770

RESUMO

Lubricants are indispensable pharmaceutical ingredients for preventing tableting failure due to powder adhesion to the die wall. The impact of lubricants was evaluated with use of the Binding Identification for Net Detriment (BIND) surface replication method. Raloxifene hydrochloride (RH) was selected as a model chemical with high adhesion, and four commercially available tablet lubricants - stearic acid, sodium stearyl fumarate, calcium stearate, and magnesium stearate - were used for RH formulation. BIND was applied to the die wall to analyze the effect of various lubricants on binding properties. The preparations without lubricants showed poor tableting properties as evidenced by as much as 61.7% powder adhesion density. Lubricants significantly altered the binding properties, yielding powder adhesion densities of 40.2% (stearic acid), 29.7% (stearyl sodium fumarate), 23.0% (calcium stearate), and 13.6% (magnesium stearate). Evaluation of three grades of magnesium stearate resulted in a two-fold difference between the highest and the lowest powder adhesion density. Throughout the work, conventional methods including visual observations and measurement of ejection force were unable to provide qualitative/quantitative evaluations. The ejection process depends on both axial force and radial force; however, the ejection force show only the axial force. At the same time, visual observation could release significant qualitative results. However, BIND allowed qualitative and quantitative analysis of the binding properties. BIND is a promising assessment method for analyzing the impacts of various lubricants on binding properties and for optimizing RH formulations.


Assuntos
Excipientes , Lubrificantes , Pós , Ácidos Esteáricos , Comprimidos
19.
Molecules ; 26(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361599

RESUMO

The present study aimed to develop an amorphous solid dispersion of nobiletin (ASD/NOB) using hydroxypropyl cellulose-SSL (HPC-SSL) to improve the pharmacokinetic properties and hypouricemic effect of NOB. ASD/NOB was prepared by the freeze-drying method (ASD/NOB). ASD/NOB was characterized with a focus on crystallinity, dissolution, pharmacokinetic behavior, and hypouricemic action in a rat model of hyperuricemia. ASD/NOB showed significant improvement in dissolution behavior, as evidenced by a 4.4-fold higher dissolved NOB concentration than crystalline NOB at 2 h in distilled water. After the oral administration of ASD/NOB (50 mg NOB/kg) in rats, higher systemic exposure to NOB was observed with an 18-fold enhancement in oral bioavailability, and the Tmax value of orally administered ASD/NOB was 60% shorter than that of orally administered crystalline NOB. In a rat model of hyperuricemia, orally dosed ASD/NOB showed an improved hypouricemic effect by a 16% reduction in the plasma uric acid level compared with orally administered crystalline NOB. Based on these findings, ASD/NOB may be an efficacious dosage option to improve the nutraceutical potential of NOB for the treatment of hyperuricemia.


Assuntos
Flavonas , Hiperuricemia/tratamento farmacológico , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Flavonas/farmacocinética , Flavonas/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
20.
Pharm Res ; 37(3): 64, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32140879

RESUMO

PURPOSE: The aim of the present study was to develop a new multi-unit dosage formulation, Universal ORbicular Vehicle (UniORV), to improve the biopharmaceutical properties of tacrolimus (TAC). METHODS: TAC-loaded UniORV (UO/TAC) was produced by the dripping and gelling of a solution comprising TAC, gelatin, starch syrup, and triethyl citrate at 0.5 w/w% drug loading. Its microstructure was elucidated by polarized light microscopy and the Raman mapping technique. The pharmacokinetic profiles of TAC after the oral administration of UO/TAC were evaluated in rats and healthy humans. RESULTS: The dissolution behavior of UO/TAC was similar to that of commercial capsules, and the formation of nanoparticles was detected by TEM in dissolved media. In a stability study on UO/TAC, only 2.6 and 4.7% decreases in TAC concentrations were observed at 40± 2°C/75 ± 5% relative humidity for 4 months and at 50± 2°C for 2 months, respectively. A pharmacokinetic study on rats revealed a 30-fold higher AUC than that with crystalline TAC. A randomized double-blind crossover study on 8 healthy males showed that UniORV achieved a 1.4-fold increase in AUC and 34% decrease in inter-individual variation from the reference formulation. CONCLUSION: The new dosage form UniORV is a promising approach to improve the dissolution, amorphous stability, and biopharmaceutical properties of TAC, which is a poorly water-soluble drug.


Assuntos
Imunossupressores/administração & dosagem , Imunossupressores/farmacocinética , Veículos Farmacêuticos/química , Tacrolimo/administração & dosagem , Tacrolimo/farmacocinética , Administração Oral , Adulto , Animais , Citratos/química , Estudos Cross-Over , Método Duplo-Cego , Composição de Medicamentos , Liberação Controlada de Fármacos , Gelatina/química , Humanos , Imunossupressores/sangue , Masculino , Ratos , Ratos Sprague-Dawley , Amido/química , Tacrolimo/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA