Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(9): 1080, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615789

RESUMO

This study assessed the levels of polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, and xylene (BTEX), and emerging contaminants in Chanomi Creek. Sediment samples were collected between March 2019 and July 2020 to evaluate the concentrations of PAH, BTEX, and emerging contaminants using GC-MS and GC-FID with Headspace extraction. Results indicated mean PAH concentrations were 22.691 ± 15.09 µg/kg. The highest individual PAH concentrations were fluorene (7.085 µg/kg), naphthalene (4.517 µg/kg), and phenanthrene (3.081 µg/kg). Carbazole (0.828 µg/kg) was discovered as a novel environmental toxin with dioxin-like toxicity and widespread prevalence in sediments. The most common congener (25%) was ethylbenzene, followed by toluene and ortho- and meta-xylene (21%) and benzene (13%). The analysis of diagnostic ratios revealed that the main factors responsible for the presence of PAHs in the study area are the residential use of firewood, emissions from industrial activities, bush burning, and petroleum slicks. The risk assessment indicated that most PAHs exceeded the permissible risk quotient values, suggesting a moderate to high ecological risk. However, cutaneous exposure to PAHs and BTEX was found to have minimal impact on human health, with no significant hazards identified in adults and children. Nevertheless, the study revealed low cancer risks associated with PAH and BTEX compounds for both age groups. The continued discharge of PAHs and BTEX compounds into Chanomi Creek could have significant long-term negative effects on human and aquatic health. Thus, contamination risk awareness programs and the development of stringent contextual thresholds for identified contaminants could enhance environmental and public health protection.


Assuntos
Benzeno , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , Humanos , Tolueno , Xilenos , Nigéria , Níger , Monitoramento Ambiental , Medição de Risco
2.
Biol Trace Elem Res ; 202(4): 1356-1389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37518840

RESUMO

The Niger Delta environment is under serious threat due to heavy metal pollution. Many studies have been conducted on the heavy metal contamination in soils, water, seafood and plants in the Niger Delta ecosystem. However, there is a lack of clear understanding of the health consequences for people and strategies for attaining One Health, and a dispersion of information that is accessible. The study focused on investigating the contamination levels, distributions, risks, sources and impacts of heavy metals in selected regions of the Niger Delta. Prior studies revealed that the levels of certain heavy metals, including Cd, Pb, Cu, Cr, Mn, Fe and Ni, in water, sediment, fish and plants in most Niger Delta ecosystems were higher than the acceptable threshold attributed to various anthropogenic stressors. In the reviewed Niger Delta states, ecosystems in Rivers state showed the highest concentrations of heavy metals in most sampled sites. Groundwater quality was recorded at concentrations higher than 0.3 mg/L World Health Organization drinking water guideline. High concentrations of copper (147.915 mg/L) and zinc (10.878 mg/L) were found in Rivers State. The heavy metals concentrations were greater in bottom-dwelling organisms such as bivalves, gastropods and shrimp than in other fishery species. Heavy metal exposure in the region poses risks of communicable and non-communicable diseases. Diverse remediation methods are crucial to reduce contamination levels, but comprehensive strategies and international cooperation are essential to address the health hazards. Actively reducing heavy metals in the environment can achieve One Health objectives and mitigate disease and economic burdens.


Assuntos
Metais Pesados , Saúde Única , Poluentes Químicos da Água , Humanos , Animais , Ecossistema , Monitoramento Ambiental/métodos , Bioacumulação , Cidades , Níger , Metais Pesados/análise , Saúde Ambiental , Água , Medição de Risco , Poluentes Químicos da Água/análise , China
3.
Environ Sci Pollut Res Int ; 30(14): 39451-39473, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773255

RESUMO

Remediation of polluted environmental media is critical to realization of the goals of the United Nations Decade on Ecosystem Restoration (UNDER) project. Many natural-resource dependent economies in Africa are characterized by numerous contaminated sites resulting from conventional and artisanal natural-resource mining. Alongside these extractive activities, there are refining, processing, and power plant operations, agriculture, urban, and infrastructure developments that contribute to increased discharges of toxins into the environment, particularly polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic in nature. As a result, human and environmental receptors (i.e., air, water, soil, and biota) face increasing risk of exposure to higher concentrations of PAH. Evidence exists of widespread PAH contamination and in some instances where corrective action has been taken, residual contaminant levels exceeding regulatory thresholds remain in the environment due to the use of inappropriate and unsustainable remedial methods. Considering the long-term harmful effects of PAH on human and ecosystem health, land use, and the complexity of Africa's environmental deterioration, it is essential to explore remediation strategies that benefit both the environment and the economy. This review examined the status, opportunities, and challenges related to the application of emerging green technologies to remediate PAH-contaminated sites in five African countries (South Africa, Nigeria, Angola, Egypt, and Kenya). This paper concludes that bioremediation presents a sustainable option, considering its low net emissions and environmental footprints, and its low economic cost to Africa's poor communities and overburdened economy. However, an integration of biological and physico-chemical approaches could address various compounds and concentrations of PAH contamination.


Assuntos
Recuperação e Remediação Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Ecossistema , Biodegradação Ambiental , Poluentes do Solo/análise , Nigéria , Egito , Solo/química , Hidrocarbonetos Policíclicos Aromáticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA