Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 19(7)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31598679

RESUMO

To decrease our dependency for the diminishing source of fossils resources, bio-based alternatives are being explored for the synthesis of commodity and high-value molecules. One example in this ecological initiative is the microbial production of the biosurfactant sophorolipids by the yeast Starmerella bombicola. Sophorolipids are surface-active molecules mainly used as household and laundry detergents. Because S. bombicola is able to produce high titers of sophorolipids, the yeast is also used to increase the portfolio of lipophilic compounds through strain engineering. Here, the one-step microbial production of hydroxy fatty acids by S. bombicola was accomplished by the selective blockage of three catabolic pathways through metabolic engineering. Successful production of 17.39 g/l (ω-1) linked hydroxy fatty acids was obtained by the successive blockage of the sophorolipid biosynthesis, the ß-oxidation and the ω-oxidation pathways. Minor contamination of dicarboxylic acids and fatty aldehydes were successfully removed using flash chromatography. This way, S. bombicola was further expanded into a flexible production platform of economical relevant compounds in the chemical, food and cosmetic industries.


Assuntos
Ácidos Graxos/biossíntese , Engenharia Metabólica/métodos , Saccharomycetales/metabolismo , Ácidos Dicarboxílicos/análise , Microbiologia Industrial , Redes e Vias Metabólicas , Ácidos Oleicos/biossíntese , Oxirredução
2.
J Phys Chem B ; 127(15): 3402-3415, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36867065

RESUMO

The solubility of ethane, ethylene, propane, and propylene was measured in two phosphorus-containing ionic liquids, trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate, [P6,6,6,14][DiOP], and 1-butyl-3-methylimidazolium dimethylphosphate, [C4C1Im][DMP], using an isochoric saturation method. The ionic liquid [C4C1Im][DMP] absorbed between 1 and 20 molecules of gas per 1000 ion pairs, at 313 K and 0.1 MPa, while [P6,6,6,14][DiOP] absorbed up to 169 molecules of propane per 1000 ion pairs under the same conditions. [C4C1Im][DMP] had a higher capacity to absorb olefins than paraffins, while the opposite was true for [P6,6,6,14][DiOP], with the former being slightly more selective than the later. From the analysis of the thermodynamic properties of solvation, we concluded that in both ionic liquids and for all of the studied gases the solvation is ruled by the entropy, even if its contribution is unfavorable. These results, together with density measurements, 2D NMR studies, and self-diffusion coefficients suggest that the gases' solubility is ruled mostly by nonspecific interactions with the ionic liquids and that the looser ion packing in [P6,6,6,14][DiOP] makes it easier to accommodate the gases compared to [C4C1Im][DMP].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA