Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 572: 118-124, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364290

RESUMO

BACKGROUND: Human induced pluripotent stem cells (hiPSCs) and their derivative cardiomyocytes (hiPSC-CMs) have been successfully used to study the electrical phenotype of cardiac ion channel diseases. However, strategies to mature CMs and more comprehensive systems recapitulating the heart complexity are required to advance our ability to capture adult phenotypes. METHODS: We differentiated wild-type (WT) and long QT syndrome type 1 (LQT1) hiPSCs into CMs, endothelial cells and cardiac fibroblasts. The three cell types were combined to form three-dimensional (3D) spheroids, termed "cardiac microtissues" (cMTs) and the electrophysiological properties were measured using 96-well multi-electrode arrays. RESULTS: LQT1 cMTs displayed prolonged field potential duration compared to WT controls, thus recapitulating the typical feature of LQTS. Isoprenaline caused a positive chronotropic effect on both LQT1 and WT cMTs. The 96-well multi-electrode array format proved suitable to detect electrical changes directly in the 3D tissues. CONCLUSIONS: 3D hiPSC cMTs are a scalable tool that can be used to identify LQT electrical hallmarks and drug responses. We anticipate this tool can be adopted by pharmaceutical companies to screen cardio-active compounds.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/metabolismo , Células Cultivadas , Humanos , Miócitos Cardíacos/citologia , Fenótipo
2.
Circulation ; 125(25): 3079-91, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22647976

RESUMO

BACKGROUND: Pluripotent stem cells (PSCs) offer a new paradigm for modeling genetic cardiac diseases, but it is unclear whether mouse and human PSCs can truly model both gain- and loss-of-function genetic disorders affecting the Na(+) current (I(Na)) because of the immaturity of the PSC-derived cardiomyocytes. To address this issue, we generated multiple PSC lines containing a Na(+) channel mutation causing a cardiac Na(+) channel overlap syndrome. METHOD AND RESULTS: Induced PSC (iPSC) lines were generated from mice carrying the Scn5a(1798insD/+) (Scn5a-het) mutation. These mouse iPSCs, along with wild-type mouse iPSCs, were compared with the targeted mouse embryonic stem cell line used to generate the mutant mice and with the wild-type mouse embryonic stem cell line. Patch-clamp experiments showed that the Scn5a-het cardiomyocytes had a significant decrease in I(Na) density and a larger persistent I(Na) compared with Scn5a-wt cardiomyocytes. Action potential measurements showed a reduced upstroke velocity and longer action potential duration in Scn5a-het myocytes. These characteristics recapitulated findings from primary cardiomyocytes isolated directly from adult Scn5a-het mice. Finally, iPSCs were generated from a patient with the equivalent SCN5A(1795insD/+) mutation. Patch-clamp measurements on the derivative cardiomyocytes revealed changes similar to those in the mouse PSC-derived cardiomyocytes. CONCLUSION: Here, we demonstrate that both embryonic stem cell- and iPSC-derived cardiomyocytes can recapitulate the characteristics of a combined gain- and loss-of-function Na(+) channel mutation and that the electrophysiological immaturity of PSC-derived cardiomyocytes does not preclude their use as an accurate model for cardiac Na(+) channel disease.


Assuntos
Cardiopatias/patologia , Cardiopatias/fisiopatologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Canais de Sódio/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Técnicas de Cocultura , Fenômenos Eletrofisiológicos/genética , Cardiopatias/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.5 , Canais de Sódio/fisiologia , Síndrome
3.
Stem Cells ; 23(6): 772-80, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15917473

RESUMO

Human embryonic stem cells (hESCs) can differentiate into cardiomyocytes, but the efficiency of this process is low. We routinely induce cardiomyocyte differentiation of the HES-2 cell line by coculture with a visceral endoderm-like cell line, END-2, in the presence of 20% fetal calf serum (FCS). In this study, we demonstrate a striking inverse relationship between cardiomyocyte differentiation and the concentration of FCS during HES-2-END-2 coculture. The number of beating areas in the cocultures was increased 24-fold in the absence of FCS compared with the presence of 20% FCS. An additional 40% increase in the number of beating areas was observed when ascorbic acid was added to serum-free cocultures. The increase in serum-free cocultures was accompanied by increased mRNA and protein expression of cardiac markers and of Isl1, a marker of cardiac progenitor cells. The number of beating areas increased up to 12 days after initiation of coculture of HES-2 with END-2 cells. However, the number of alpha-actinin-positive cardiomyocytes per beating area did not differ significantly between serum-free cocultures (503 +/- 179; mean +/- standard error of the mean) and 20% FCS cocultures (312 +/- 227). The stimulating effect of serum-free coculture on cardiomyocyte differentiation was observed not only in HES-2 but also in the HES-3 and HES-4 cell lines. To produce sufficient cardiomyocytes for cell replacement therapy in the future, upscaling cardiomyocyte formation from hESCs is essential. The present data provide a step in this direction and represent an improved in vitro model, without interfering factors in serum, for testing other factors that might promote cardiomyocyte differentiation.


Assuntos
Embrião de Mamíferos/citologia , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Actinina/metabolismo , Animais , Western Blotting , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura Livres de Soro/farmacologia , Humanos , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA