Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ultraschall Med ; 45(1): 69-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36746396

RESUMO

OBJECTIVES: This study aimed to evaluate elastography features of deep infiltrating endometriosis (DIE), and to define whether this technique may discriminate lesions from surrounding non-endometriotic tissue. METHODS: This was an exploratory observational study on women affected by DIE treated in a third-level academic hospital gynaecology outpatient facility between 2020 and 2021. Strain elastography (SE) was conducted via transvaginal probe. Tissue deformation of DIE and surrounding tissue was expressed as percentage tissue deformation or as subjective colour score (CS; from blue=stiff to red=soft, assigned numerical values from 0 to 3). Ratios of normal tissue/DIE were compared to ratio of normal tissue/stiffer normal tissue area. RESULTS: Evaluations were performed on 46 DIE nodules and surrounding tissue of the uterosacral ligaments (n=21), parametrium (n=7), rectum (n=14), and recto-vaginal septum (n =4). Irrespective of location, DIE strain ratio (3.09, IQR 2.38-4.14 vs. 1.25, IQR 1.11-1.48; p<0.001) and CS ratio (4.62, IQR 3.83-6.94 vs. 1.13, IQR 1.06-1.29; p<0.001) was significantly higher than that of normal tissue. ROC AUC of CS ratio was higher than ROC AUC of strain ratio (99.76%, CI.95 99.26-100% vs. 91.35%, CI.95 85.23-97.47%; p=0.007), and best ROC threshold for CS ratio was 1.82, with a sensitivity of 97.83% (CI.95 93.48-100%) and a specificity of 100% (CI.95 100-100%). CONCLUSIONS: Both strain and CS ratios accurately distinguish DIE nodules at various locations. Applications of elastography in improving the diagnosis DIE, in distinguishing different DIE lesions and in monitoring DIE evolution can be envisioned and are worthy of further evaluation.


Assuntos
Técnicas de Imagem por Elasticidade , Endometriose , Feminino , Humanos , Endometriose/diagnóstico por imagem , Endometriose/patologia , Sensibilidade e Especificidade , Estudos de Viabilidade , Reto/diagnóstico por imagem , Reto/patologia , Ultrassonografia/métodos
2.
J Transl Med ; 21(1): 757, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884933

RESUMO

Liver steatosis, inflammation, and variable degrees of fibrosis are the pathological manifestations of nonalcoholic steatohepatitis (NASH), an aggressive presentation of the most prevalent chronic liver disease in the Western world known as nonalcoholic fatty liver (NAFL). Mitochondrial hepatocyte dysfunction is a primary event that triggers inflammation, affecting Kupffer and hepatic stellate cell behaviour. Here, we consider the role of impaired mitochondrial function caused by lipotoxicity during oxidative stress in hepatocytes. Dysfunction in oxidative phosphorylation and mitochondrial ROS production cause the release of damage-associated molecular patterns from dying hepatocytes, leading to activation of innate immunity and trans-differentiation of hepatic stellate cells, thereby driving fibrosis in NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/patologia , Hepatócitos/patologia , Inflamação/patologia , Fibrose , Mitocôndrias/patologia
3.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762081

RESUMO

Cellular metabolism therapy counteracting metabolic dysfunction performs a preeminent role in the pathophysiology of different diseases, such as cancer, diabetes, metabolic syndrome, and cardiovascular and neurodegenerative diseases [...].


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Síndrome Metabólica , Humanos
4.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047080

RESUMO

Human diseases are characterized by the perpetuation of an inflammatory condition in which the levels of Reactive Oxygen Species (ROS) are quite high. Excessive ROS production leads to DNA damage, protein carbonylation and lipid peroxidation, conditions that lead to a worsening of inflammatory disorders. In particular, compromised mitochondria sustain a stressful condition in the cell, such that mitochondrial dysfunctions become pathogenic, causing human disorders related to inflammatory reactions. Indeed, the triggered inflammation loses its beneficial properties and turns harmful if dysregulation and dysfunctions are not addressed. Thus, reducing oxidative stress with ROS scavenger compounds has proven to be a successful approach to reducing inflammation. Among these, natural compounds, in particular, polyphenols, alkaloids and coenzyme Q10, thanks to their antioxidant properties, are capable of inhibiting the activation of NF-κB and the expression of target genes, including those involved in inflammation. Even more, clinical trials, and in vivo and in vitro studies have demonstrated the antioxidant and anti-inflammatory effects of phytosomes, which are capable of increasing the bioavailability and effectiveness of natural compounds, and have long been considered an effective non-pharmacological therapy. Therefore, in this review, we wanted to highlight the relationship between inflammation, altered mitochondrial oxidative activity in pathological conditions, and the beneficial effects of phytosomes. To this end, a PubMed literature search was conducted with a focus on various in vitro and in vivo studies and clinical trials from 2014 to 2022.


Assuntos
Antioxidantes , Confiança , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Inflamação/metabolismo , Estresse Oxidativo
5.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835176

RESUMO

Skeletal muscle atrophy is a condition characterized by a loss of muscle mass and muscle strength caused by an imbalance between protein synthesis and protein degradation. Muscle atrophy is often associated with a loss of bone mass manifesting as osteoporosis. The aim of this study was to evaluate if chronic constriction injury (CCI) of the sciatic nerve in rats can be a valid model to study muscle atrophy and consequent osteoporosis. Body weight and body composition were assessed weekly. Magnetic resonance imaging (MRI) was performed on day zero before ligation and day 28 before sacrifice. Catabolic markers were assessed via Western blot and Quantitative Real-time PCR. After the sacrifice, a morphological analysis of the gastrocnemius muscle and Micro-Computed Tomography (Micro-CT) on the tibia bone were performed. Rats that underwent CCI had a lower body weight increase on day 28 compared to the naive group of rats (p < 0.001). Increases in lean body mass and fat mass were also significantly lower in the CCI group (p < 0.001). The weight of skeletal muscles was found to be significantly lower in the ipsilateral hindlimb compared to that of contralateral muscles; furthermore, the cross-sectional area of muscle fibers decreased significantly in the ipsilateral gastrocnemius. The CCI of the sciatic nerve induced a statistically significant increase in autophagic and UPS (Ubiquitin Proteasome System) markers and a statistically significant increase in Pax-7 (Paired Box-7) expression. Micro-CT showed a statistically significant decrease in the bone parameters of the ipsilateral tibial bone. Chronic nerve constriction appeared to be a valid model for inducing the condition of muscle atrophy, also causing changes in bone microstructure and leading to osteoporosis. Therefore, sciatic nerve constriction could be a valid approach to study muscle-bone crosstalk and to identify new strategies to prevent osteosarcopenia.


Assuntos
Doenças Ósseas Metabólicas , Atrofia Muscular , Osteoporose , Nervo Isquiático , Animais , Ratos , Peso Corporal , Doenças Ósseas Metabólicas/patologia , Constrição , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Osteoporose/patologia , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Microtomografia por Raio-X
6.
Pharmacol Res ; 186: 106547, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36336218

RESUMO

Widespread musculoskeletal pain characterizes fibromyalgia (FM), accompanied by sleep, fatigue, and mood problems. Chronic stress and depression play a crucial role in the etiology and pathophysiology of FM. They may contribute to a dysregulation of the central pain mechanisms together with the neuroendocrine and immune systems. Pharmacological treatments are the first-line therapy to reduce the symptoms of FM. The US Food and Drug Administration (FDA) indicated gabapentinoid, pregabalin, duloxetine, and milnacipran for adult patients. An alternative approach is widely used, based on therapies including interventions in patient education, behavioral therapy, exercise, pain management, and a healthy diet. A systematic search was performed on PubMed, MEDLINE, EMBASE, and Web of Science databases. The authors established the selection, inclusion, and exclusion criteria. We found a total of 908 articles. This systematic review will include ten articles selected after excluding duplicates and reading the abstracts and full texts. All studies related the effect of drugs to various symptoms caused by fibromyalgia patients with depression, such as insomnia/sleepiness, depression, suicide, difficulty walking/working, pain, fatigue, and nervousness. Although, we concluded that antidepressant drugs are effective in treating depression and pain in fibromyalgia, further studies are needed to understand the etiology of this disease and to find a combination of therapies to increase tolerability and adherence of the patient to the drug, decreasing the adverse effects.


Assuntos
Fibromialgia , Dor Musculoesquelética , Adulto , Humanos , Fibromialgia/tratamento farmacológico , Antidepressivos/efeitos adversos , Fadiga/tratamento farmacológico , Dor Musculoesquelética/tratamento farmacológico , Emprego
7.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012238

RESUMO

The beneficial effects of bergamot polyphenolic fraction (BPF) on the mitochondrial bioenergetics of porcine aortic endothelial cells (pAECs) were verified under the cardiotoxic action of doxorubicin (DOX). The cell viability of pAECs treated for 24 h with different concentrations of DOX was reduced by 50%, but the negative effect of DOX was reversed in the presence of increasing doses of BPF (100 µg/mL and 200 µg/mL BPF). An analysis of the protective effect of BPF on the toxic action of DOX was also carried out on cell respiration. We observed the inhibition of the mitochondrial activity at 10 µM DOX, which was not restored by 200 µg/mL BPF. Conversely, the decrease in basal respiration and ATP production caused by 0.5 or 1.0 µM DOX were improved in the presence of 100 or 200 µg/mL BPF, respectively. After 24 h of cell recovery with 100 µg/mL or 200 µg/mL BPF on pAECs treated with 0.5 µM or 1.0 µM DOX, respectively, the mitochondrial parameters of oxidative metabolism impaired by DOX were re-boosted.


Assuntos
Doxorrubicina , Células Endoteliais , Animais , Antibióticos Antineoplásicos/farmacologia , Sobrevivência Celular , Doxorrubicina/toxicidade , Coração , Mitocôndrias , Suínos
8.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555095

RESUMO

Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.


Assuntos
Doenças Cardiovasculares , Óxido Nítrico , Humanos , Nitratos/uso terapêutico , Nitratos/farmacologia , Aldeído Desidrogenase , Doenças Cardiovasculares/tratamento farmacológico , Nitroglicerina/uso terapêutico , Nitroglicerina/farmacologia , Aldeído-Desidrogenase Mitocondrial , Vasodilatadores/farmacologia
9.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409057

RESUMO

The maintenance of the physiological values of blood pressure is closely related to unchangeable factors (genetic predisposition or pathological alterations) but also to modifiable factors (dietary fat and salt, sedentary lifestyle, overweight, inappropriate combinations of drugs, alcohol abuse, smoking and use of psychogenic substances). Hypertension is usually characterized by the presence of a chronic increase in systemic blood pressure above the threshold value and is an important risk factor for cardiovascular disease, including myocardial infarction, stroke, micro- and macro-vascular diseases. Hypertension is closely related to functional changes in the endothelium, such as an altered production of vasoconstrictive and vasodilator substances, which lead to an increase in vascular resistance. These alterations make the endothelial tissue unresponsive to autocrine and paracrine stimuli, initially determining an adaptive response, which over time lead to an increase in risk or disease. The gut microbiota is composed of a highly diverse bacterial population of approximately 1014 bacteria. A balanced intestinal microbiota preserves the digestive and absorbent functions of the intestine, protecting from pathogens and toxic metabolites in the circulation and reducing the onset of various diseases. The gut microbiota has been shown to produce unique metabolites potentially important in the generation of hypertension and endothelial dysfunction. This review highlights the close connection between hypertension, endothelial dysfunction and gut microbiota.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Animais , Bactérias , Pressão Sanguínea , Disbiose/microbiologia , Humanos , Hipertensão/microbiologia , Intestinos/microbiologia , Modelos Animais
10.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34360675

RESUMO

In recent decades, interest in natural compounds has increased exponentially due to their numerous beneficial properties in the treatment of various acute and chronic diseases. A group of plant derivatives with great scientific interest is terpenic compounds. Among the plants richest in terpenes, the genus Ferula L. is one of the most representative, and ferutinin, the most common sesquiterpene, is extracted from the leaves, rhizome, and roots of this plant. As reported in the scientific literature, ferutinin possesses antioxidant and anti-inflammatory properties, as well as valuable estrogenic properties. Neurodegenerative and demyelinating diseases are devastating conditions for which a definite cure has not yet been established. The mechanisms involved in these diseases are still poorly understood, and oxidative stress is considered to be both a key modulator and a common denominator. In the proposed experimental system, co-cultured human neurons (SH-SY5Y) and human oligodendrocytes (MO3.13) were treated with the pro-inflammatory agent lipopolysaccharide at a concentration of 1 µg/mL for 24 h or pretreated with ferutinin (33 nM) for 24 h and subsequently exposed to lipopolysaccharide 1 µg/mL for 24 h. Further studies would, however, be needed to establish whether this natural compound can be used as a support strategy in pathologies characterized by progressive inflammation and oxidative stress phenomena.


Assuntos
Benzoatos/farmacologia , Cicloeptanos/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Estresse Oxidativo , Sesquiterpenos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Linhagem Celular , Técnicas de Cocultura , Escherichia coli , Humanos , Inflamação/induzido quimicamente , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Substâncias Protetoras/farmacologia
11.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283806

RESUMO

The neurodegenerative process is characterized by the progressive ultrastructural alterations of selected classes of neurons accompanied by imbalanced cellular homeostasis, a process which culminates, in the later stages, in cell death and the loss of specific neurological functions. Apart from the neuronal cell impairment in selected areas of the central nervous system which characterizes many neurodegenerative diseases (e.g., Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, etc.), some alterations may be found in the early stages including gliosis and the misfolding or unfolding accumulation of proteins. On the other hand, several common pathophysiological mechanisms can be found early in the course of the disease including altered oxidative metabolism, the loss of cross-talk among the cellular organelles and increased neuroinflammation. Thus, antioxidant compounds have been suggested, in recent years, as a potential strategy for preventing or counteracting neuronal cell death and nutraceutical supplementation has been studied in approaching the early phases of neurodegenerative diseases. The present review will deal with the pathophysiological mechanisms underlying the early stages of the neurodegenerative process. In addition, the potential of nutraceutical supplementation in counteracting these diseases will be assessed.


Assuntos
Antioxidantes/metabolismo , Produtos Biológicos/metabolismo , Suplementos Nutricionais , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Animais , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Suscetibilidade a Doenças , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença
12.
Int J Mol Sci ; 20(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277498

RESUMO

The maintenance of physiological levels of nitric oxide (NO) produced by eNOS represents a key element for vascular endothelial homeostasis. On the other hand, NO overproduction, due to the activation of iNOS under different stress conditions, leads to endothelial dysfunction and, in the late stages, to the development of atherosclerosis. Oxidized LDLs (oxLDLs) represent the major candidates to trigger biomolecular processes accompanying endothelial dysfunction and vascular inflammation leading to atherosclerosis, though the pathophysiological mechanism still remains to be elucidated. Here, we summarize recent evidence suggesting that oxLDLs produce significant impairment in the modulation of the eNOS/iNOS machinery, downregulating eNOS via the HMGB1-TLR4-Caveolin-1 pathway. On the other hand, increased oxLDLs lead to sustained activation of the scavenger receptor LOX-1 and, subsequently, to NFkB activation, which, in turn, increases iNOS, leading to EC oxidative stress. Finally, these events are associated with reduced protective autophagic response and accelerated apoptotic EC death, which activates atherosclerotic development. Taken together, this information sheds new light on the pathophysiological mechanisms of oxLDL-related impairment of EC functionality and opens new perspectives in atherothrombosis prevention.


Assuntos
Aterosclerose/enzimologia , Endotélio Vascular/enzimologia , Endotélio Vascular/patologia , Inflamação/enzimologia , Lipoproteínas LDL/metabolismo , Óxido Nítrico Sintase/metabolismo , Animais , Humanos , Inflamação/patologia , Óxido Nítrico/metabolismo
13.
Int J Mol Sci ; 20(12)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226852

RESUMO

The exchange of solutes between the blood and the nerve tissue is mediated by specific and high selective barriers in order to ensure the integrity of the different compartments of the nervous system. At peripheral level, this function is maintained by the Blood Nerve Barrier (BNB) that, in the presence, of specific stressor stimuli can be damaged causing the onset of neurodegenerative processes. An essential component of BNB is represented by the endothelial cells surrounding the sub-structures of peripheral nerves and increasing evidence suggests that endothelial dysfunction can be considered a leading cause of the nerve degeneration. The purpose of this review is to highlight the main mechanisms involved in the impairment of endothelial cells in specific diseases associated with peripheral nerve damage, such as diabetic neuropathy, erectile dysfunction and inflammation of the sciatic nerve.


Assuntos
Barreira Hematoneural/patologia , Neuropatias Diabéticas/patologia , Endotélio/patologia , Disfunção Erétil/patologia , Neuralgia/patologia , Animais , Barreira Hematoneural/metabolismo , Barreira Hematoneural/fisiopatologia , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/fisiopatologia , Endotélio/metabolismo , Endotélio/fisiopatologia , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Humanos , Masculino , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/fisiopatologia
15.
Free Radic Biol Med ; 210: 333-343, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056573

RESUMO

Selenite as an inorganic form of selenium can affect the redox state of mitochondria by modifying the thiol groups of cysteines. The F1FO-ATPase has been identified as a mitochondrial target of this compound. Indeed, the bifunctional mechanism of ATP turnover of F1FO-ATPase was differently modified by selenite. The activity of ATP hydrolysis was stimulated, whereas the ADP phosphorylation was inhibited. We ascertain that a possible new protein adduct identified as seleno-dithiol (-S-Se-S-) mercaptoethanol-sensitive caused the activation of F-ATPase activity and the oxidation of free -SH groups in mitochondria. Conversely, the inhibition of ATP synthesis by selenite might be irreversible. The kinetic analysis of the activation mechanism was an uncompetitive mixed type with respect to the ATP substrate. Selenite bound more selectively to the F1FO-ATPase loaded with the substrate by preferentially forming a tertiary (enzyme-ATP-selenite) complex. Otherwise, the selenite was a competitive mixed-type activator with respect to the Mg2+ cofactor. Thus, selenite more specifically bound to the free enzyme forming the complex enzyme-selenite. However, even if the selenite impaired the catalysis of F1FO-ATPase, the mitochondrial permeability transition pore phenomenon was unaffected. Therefore, the reversible energy transduction mechanism of F1FO-ATPase can be oppositely regulated by selenite.


Assuntos
Adenosina Trifosfatases , Compostos de Sulfidrila , Adenosina Trifosfatases/metabolismo , Fosforilação , Compostos de Sulfidrila/metabolismo , Cinética , Hidrólise , Mitocôndrias/metabolismo , Oxirredução , Trifosfato de Adenosina/metabolismo
16.
Plants (Basel) ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794436

RESUMO

Opuntia ficus-indica (L.) Mill. belongs to the Cactaceae family and the genus Opuntia; it is a succulent plant that adapts to extreme climatic conditions. The aerial part of the plant consists of the cladodes, morphological changes of branches that appear green, are covered with thorns, and are essential to reduce excessive perspiration of water. The composition of cladodes is very varied, and the main constituents are water, fibers, polysaccharides, proteins, fatty acids, vitamins, sterols, minerals, and polyphenols. Polyphenols are responsible for many beneficial activities for human health, such as antioxidant, anti-inflammatory, anticancer, and nutritional properties. The purpose of this manuscript was to compare the properties of cladodes belonging to the same plant but with different stages of maturity. Relative extracts were tested both in vitro and on a cell line and antioxidant and anti-apoptotic properties were found. The antioxidant activity was tested by the Oxygen Radical Absorbance Capacity (ORAC) test, the 1,1-diphenyl-2-picrylhydrazil (DPPH) test, and the measurement of cellular accumulation of reactive oxygen species (ROS). Anti-apoptotic activity was evaluated by the annexin/PI assay and measurement of caspases 9 and 3 expression. The results obtained showed that the extracts considered possess antioxidant and anti-apoptotic properties. However, the different stages of maturity of cladodes are essential for the performance of both functions. In addition, important variations were made in the dissolution of the extracts that brought greater safety in their use. In conclusion, this manuscript provides further information on cladodes of Opuntia ficus-indica, which can be used as adjuvants in many human pathologies.

17.
Animals (Basel) ; 14(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731274

RESUMO

The Podolica cattle breed is widespread in southern Italy, and its productivity is characterized by low yields and an extraordinary quality of milk and meats. Most of the milk produced is transformed into "Caciocavallo Podolico" cheese, which is made with 100% Podolica milk. Fourier Transform Infrared Spectroscopy (FTIR) is the technique that, in this research work, was applied together with machine learning to discriminate 100% Podolica milk from contamination of other Calabrian cattle breeds. The analysis on the test set produced a misclassification percentage of 6.7%. Among the 15 non-Podolica samples in the test set, 2 were misclassified and recognized as Podolica milk even though the milk was from other species. The correct classification rate improved to 100% when the same method was applied to the recognition of Podolica and Pezzata Rossa milk produced by the same farm. Furthermore, this technique was tested for the recognition of Podolica milk mixed with milk from other bovine species. The multivariate model and the respective confusion matrices obtained showed that all the 14 Podolica samples (test set) mixed with 40% non-Podolica milk were correctly classified. In addition, Pezzata Rossa milk produced by the same farm was detected as a contaminant in Podolica milk from the same farm down to concentrations as little as 5% with a 100% correct classification rate in the test set. The method described yielded higher accuracy values when applied to the discrimination of milks from different breeds belonging to the same farm. One of the reasons for this phenomenon could be linked to the elimination of the environmental variable. However, the results obtained in this work demonstrate the possibility of using FTIR to discriminate between milks from different breeds.

18.
Plants (Basel) ; 13(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38498558

RESUMO

Opuntia ficus-indica (L.) Miller is a plant belonging to the Cactaceae family adapted to live in environments characterized by long periods of drought and arid or desert climates. This plant is characterized by an aerial part composed of structures transformed by branches, called "cladodes", which are essential to reduce excessive perspiration of water and appear covered with thorns. The composition of the cladodes includes water, polysaccharides, fiber, proteins, vitamins, fatty acids, sterols, polyphenols, and minerals. The main purposes of this scientific work are (a) to compare the insoluble fiber (IF) extracted from the cladodes of O. ficus-indica belonging to the same plant but collected in different seasonal periods (winter and summer) and develop new extraction protocols that are able to improve the yield obtained and (b) evaluate the antioxidant potential of the fiber and study possible variations as a result of the extraction protocol chosen. The first objective was achieved (1) by measuring the amount of IF extracted from cladodes harvested in winter and summer (CW and CS, respectively) and (2) by modifying three variables involved in the fiber extraction protocol. To achieve the second objective, the following experiments were carried out: (1) measurement of the antioxidant potential of IF in CW and CS; (2) measurement of cellular reactive oxygen species; (3) measurement of the activity of some antioxidant enzymes; and (4) comparison of the polyphenol content in CW and CS. In conclusion, the results obtained showed that the IF extraction process can be improved, achieving a uniform yield regardless of seasonality; the antioxidant effect may vary depending on the extraction protocol.

19.
Front Cardiovasc Med ; 11: 1332339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322770

RESUMO

Introduction: Cardiovascular diseases (CVDs) are the most important cause of premature death and disability worldwide. Environmental degradation and cardiovascular diseases are two keys to health challenges, characterized by a constant evolution in an industrialized world that exploits natural resources regardless of the consequences for health. The etiological risk factors of CVDs are widely known and include dyslipidemia, obesity, diabetes, and chronic cigarette consumption. However, one component that is often underestimated is exposure to heavy metals. The biological perspective explains that different metals play different roles. They are therefore classified into essential heavy metals, which are present in organisms where they perform important vital functions, especially in various physiological processes, or non-essential heavy metals, with a no biological role but, nonetheless, remain in the environment in which they are absorbed. Although both types of metal ions are many times chemically similar and can bind to the same biological ligands, the attention given today to nonessential metals in several eukaryotic species is starting to raise strong concerns due to an exponential increase in their concentrations. The aim of this systematic review was to assess possible correlations between exposure to nonessential heavy metals and increased incidence of cardiovascular disease, reporting the results of studies published in the last 5 years through March 2023. Methods: The studies includes reviews retrieved from PubMed, Medline, Embase, and Web of Science databases, in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and following the PICO (Population Intervention Comparison Outcome Population) framework. Results: Eight reviews, including a total of 153 studies, were identified. Seven of these review enlighted the association between CVDs and non-essential heavy metals chronic exposure. Discussion: It is evident that exposure to heavy metals represent a risk factor for CVDs onset. However, further studies are needed to better understand the effects caused by these metals.

20.
Front Cardiovasc Med ; 11: 1345218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370153

RESUMO

Arterial hypertension represents a leading cause of cardiovascular morbidity and mortality worldwide, and the identification of effective solutions for treating the early stages of elevated blood pressure (BP) is still a relevant issue for cardiovascular risk prevention. The pathophysiological basis for the occurrence of elevated BP and the onset of arterial hypertension have been widely studied in recent years. In addition, consistent progress in the development of novel, powerful, antihypertensive drugs and their appropriate applications in controlling BP have increased our potential for successfully managing disease states characterized by abnormal blood pressure. However, the mechanisms responsible for the disruption of endogenous mechanisms contributing to the maintenance of BP within a normal range are yet to be fully clarified. Recently, evidence has shown that several natural antioxidants containing active ingredients originating from natural plant extracts, used alone or in combination, may represent a valid solution for counteracting the development of arterial hypertension. In particular, there is evidence to show that natural antioxidants may enhance the viability of endothelial cells undergoing oxidative damage, an effect that could play a crucial role in the pathophysiological events accompanying the early stages of arterial hypertension. The present review aims to reassess the role of oxidative stress on endothelial dysfunction in the onset and progression of arterial hypertension and that of natural antioxidants in covering several unmet needs in the treatment of such diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA