Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Am Chem Soc ; 146(8): 5393-5401, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38359303

RESUMO

Disentangling electronic and thermal effects in photoexcited perovskite materials is crucial for photovoltaic and optoelectronic applications but remains a challenge due to their intertwined nature in both the time and energy domains. In this study, we employed temperature-dependent variable-angle spectroscopic ellipsometry, density functional theory calculations, and broadband transient absorption spectroscopy spanning the visible to mid-to-deep-ultraviolet (UV) ranges on MAPbBr3 thin films. The use of deep-UV detection opens a new spectral window that enables the exploration of high-energy excitations at various symmetry points within the Brillouin zone, facilitating an understanding of the ultrafast responses of the UV bands and the underlying mechanisms governing them. Our investigation reveals that the photoinduced spectral features remarkably resemble those generated by pure lattice heating, and we disentangle the relative thermal and electronic contributions and their evolutions at different delay times using combinations of decay-associated spectra and temperature-induced differential absorption. The results demonstrate that the photoinduced transients possess a significant thermal origin and cannot be attributed solely to electronic effects. Following photoexcitation, as carriers (electrons and holes) transfer their energy to the lattice, the thermal contribution increases from ∼15% at 1 ps to ∼55% at 500 ps and subsequently decreases to ∼35-50% at 1 ns. These findings elucidate the intricate energy exchange between charge carriers and the lattice in photoexcited perovskite materials and provide insights into the limited utilization efficiency of photogenerated charge carriers.

2.
Phys Chem Chem Phys ; 26(7): 6265-6276, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305747

RESUMO

Controlling the ultrafast photodynamics of metal-free organic molecules has great potential for technological applications. In this work, we use solvent polarity and viscosity as "external knobs" to govern the photodynamics of an electron-donating derivative of 2,2':6',2''-terpyridine (terpy), namely 4'-(4-(di(4-tert-butylphenyl)amine)phenyl)-2,2':6',2''-terpyridine (tBuTPAterpy). We combine femtosecond fluorescence upconversion (FlUC), transient absorption (TA) and quantum mechanical calculations to provide a comprehensive description of the tBuTPAterpy's photodynamics. Our results demonstrate that, by changing the solvent, the time scale of light-induced conformational changes of the system can be tuned over two orders of magnitude, controlling the tBuTPAterpy fluorescence spectral region and yield. As a result, depending on the local environment, tBuTPAterpy can act either as an "early bird" or a "night owl", with a tunability that makes it a promising candidate for metal-free sensors.

3.
Chimia (Aarau) ; 78(1-2): 45-49, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38430063

RESUMO

Chiral molecules exist in two forms, called enantiomers, which are mirror images of each other but non-superimposable. Even though enantiomers share most chemical and physical properties, they may differ greatly in their (bio-)chemical activities, which turns chirality into a key design feature for (bio-)chemical function. In this spirit, the incorporation of chiral structures into photochemical systems has emerged as a powerful strategy to control their functions. For example, uni-directional molecular motors, chiral photocatalysts, and chiral metal nanostructures permit new levels of stereocontrol over mechanical motion, energy transfer, and electric charge-carriers on the nanoscale. However, the direct characterization of the underlying chiral photoexcited states remains a formidable experimental challenge - especially in the native solution phase of many photochemical processes. Crucially, this requires analytical techniques that combine a high chiral sensitivity in solution with ultrafast time resolution to capture the excited state dynamics. This brief perspective article presents recent progress in the development of ultrafast chiral spectroscopy techniques that address this challenge.

4.
J Am Chem Soc ; 139(33): 11584-11589, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28762734

RESUMO

Ultrafast interfacial electron transfer in sensitized solar cells has mostly been probed by visible-to-terahertz radiation, which is sensitive to the free carriers in the conduction band of the semiconductor substrate. Here, we demonstrate the use of deep-ultraviolet continuum pulses to probe the interfacial electron transfer, by detecting a specific excitonic transition in both N719-sensitized anatase TiO2 and wurtzite ZnO nanoparticles. Our results are compared to those obtained on bare nanoparticles upon above-gap excitation. We show that the signal upon electron injection from the N719 dye into TiO2 is dominated by long-range Coulomb screening of the final states of the excitonic transitions, whereas in sensitized ZnO it is dominated by phase-space filling. The present approach offers a possible route to detecting interfacial electron transfer in a broad class of systems, including other transition metal oxides or sensitizers.

5.
Chimia (Aarau) ; 71(5): 288-294, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28576155

RESUMO

We describe the facilities for ultraviolet studies in the femtosecond to nanosecond time domain. These facilities consist of: i) a set-up for deep-ultraviolet spectroscopy in the 260-380 nm range in both pump and probe pulses for transient absorption/reflectivity or two-dimensional spectroscopy studies; ii) a set-up for ultrafast fluorescence measurements with detection down to 300 nm. The capabilities of these set-ups are demonstrated by examples on molecular systems, biosystems, nanoparticles and solid materials.


Assuntos
Citocromos c/química , Mioglobina/química , Espectrofotometria Ultravioleta/instrumentação , Triptofano/química , Raios Ultravioleta , Animais , Coração , Cavalos , Fatores de Tempo
6.
Phys Chem Chem Phys ; 15(29): 12308-13, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23774995

RESUMO

We present studies of high-order harmonic generation (HHG) in laser ablation plumes of the ribonucleic acid nucleobase uracil and its deoxyribonucleic acid counterpart thymine. Harmonics were generated using 780 nm, 30 fs and 1300 nm, 40 fs radiation upon ablation with 1064 nm, 10 ns or 780 nm, 160 ps pulses. Strong HHG signals were observed from uracil plumes with harmonics emitted with photon energies >55 eV. Results obtained in uracil plumes were compared with those from thymine, which did not yield signs of harmonic generation. The ablation plumes of the two compounds were examined by collection of the ablation debris on a silicon substrate placed in close proximity to the target and by time-of-flight mass spectrometry. From this evidence we conclude that the differences in HHG signal are due to the different fragmentation dynamics of the molecules in the plasma plume. These studies constitute the first attempt to analyse differences in structural properties of complex molecules through plasma ablation-induced HHG spectroscopy.


Assuntos
Timina/química , Uracila/química , Raios Infravermelhos , Espectrometria de Massas , Silício/química
7.
Phys Chem Chem Phys ; 14(27): 9785-91, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22688591

RESUMO

Laser induced impulsive molecular alignment has been fully characterized in linear molecules by matching numerical simulations and experimental data of the corresponding rotational wavepacket in the frequency domain. A rigorous procedure for an accurate matching between simulation and experimental data is presented for the first time, making this a versatile technique for experiments where the molecular axis distribution is not directly accessible. Seeding small molecules in Ar as a carrier gas has then been employed to assist cooling and we systematically retrieve the molecule's rotational temperature and alignment distribution for different mixing ratios. For a total backing pressure of 2 bar it was found that seeding 10% N(2) in Ar results in the best cooling. Compared to pure N(2) the rotational temperature was reduced from 24 ± 2 K down to 9 ± 2 K. This leads to an improvement of the peak alignment distribution from = 0.60 to = 0.71. For the same mixing ratio CO(2) was cooled from 34 ± 3 K to 9 ± 1 K improving the alignment distribution from 0.48 to 0.64. In O(2) a cooling from 58 ± 2 K to 37 ± 4 K was observed, corresponding to an alignment distribution improvement from 0.49 to 0.58. The results demonstrate the wide applicability of the characterisation procedure and of seeded supersonic beams to optimise impulsive alignment of small molecules.

8.
Nat Chem ; 14(7): 739-745, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35618767

RESUMO

Iron-based spin-crossover complexes hold tremendous promise as multifunctional switches in molecular devices. However, real-world technological applications require the excited high-spin state to be kinetically stable-a feature that has been achieved only at cryogenic temperatures. Here we demonstrate high-spin-state trapping by controlling the chiral configuration of the prototypical iron(II)tris(4,4'-dimethyl-2,2'-bipyridine) in solution, associated for stereocontrol with the enantiopure Δ- or Λ-enantiomer of tris(3,4,5,6-tetrachlorobenzene-1,2-diolato-κ2O1,O2)phosphorus(V) (P(O2C6Cl4)3- or TRISPHAT) anions. We characterize the high-spin-state relaxation using broadband ultrafast circular dichroism spectroscopy in the deep ultraviolet in combination with transient absorption and anisotropy measurements. We find that the high-spin-state decay is accompanied by ultrafast changes of its optical activity, reflecting the coupling to a symmetry-breaking torsional twisting mode, contrary to the commonly assumed picture. The diastereoselective ion pairing suppresses the vibrational population of the identified reaction coordinate, thereby achieving a fourfold increase of the high-spin-state lifetime. More generally, our results motivate the synthetic control of the torsional modes of iron(II) complexes as a complementary route to manipulate their spin-crossover dynamics.

9.
Chem Sci ; 13(18): 5230-5242, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655577

RESUMO

The photochemistry of DNA systems is characterized by the ultraviolet (UV) absorption of π-stacked nucleobases, resulting in exciton states delocalized over several bases. As their relaxation sensitively depends on local stacking conformations, disentangling the ensuing electronic and structural dynamics has remained an experimental challenge, despite their fundamental role in protecting the genome from potentially harmful UV radiation. Here we use transient absorption and transient absorption anisotropy spectroscopy with broadband femtosecond deep-UV pulses (250-360 nm) to resolve the exciton dynamics of UV-excited adenosine single strands under physiological conditions. Due to the exceptional deep-UV bandwidth and polarization sensitivity of our experimental approach, we simultaneously resolve the population dynamics, charge-transfer (CT) character and conformational changes encoded in the UV transition dipoles of the π-stacked nucleotides. Whilst UV excitation forms fully charge-separated CT excitons in less than 0.3 ps, we find that most decay back to the ground state via a back-electron transfer. Based on the anisotropy measurements, we propose that this mechanism is accompanied by a structural relaxation of the photoexcited base-stack, involving an inter-base rotation of the nucleotides. Our results finally complete the exciton relaxation mechanism for adenosine single strands and offer a direct view into the coupling of electronic and structural dynamics in aggregated photochemical systems.

10.
J Phys Chem Lett ; 10(11): 2700-2705, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31059267

RESUMO

The far-UV spectral window widely used for the conformational analysis of biomolecules is not easily covered with broad-band lasers. This has made it difficult to use circular dichroism (CD) spectroscopy to directly follow fast structure changes. By combining transient CD spectroscopy in the deep-UV with thioamide substitution, we demonstrate a method to overcome this difficulty. We investigated a dipeptide whose two carbonyl oxygen atoms were replaced by sulfur, red-shifting the strong lowest-lying ππ* transitions into the more accessible 250-370 nm spectral window. Coupling of the two thioamide units cannot be resolved by achiral 2D-UV spectroscopy, but it gives rise to a pronounced bisignate CD spectrum. The transient CD spectra reveal weakening of this coupling in the electronically excited state, where conformational constraints are released. Our results show that direct local probing of fast backbone conformational change via CD spectroscopy is possible in combination with site-selective thio substitution in peptides and proteins.

11.
Struct Dyn ; 4(4): 044032, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28713841

RESUMO

Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.

12.
Oncogene ; 24(49): 7369-80, 2005 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16007125

RESUMO

The proapoptotic BH3-only protein natural born killer / Bcl-2 interacting killer (Nbk/Bik) has been described to inhibit Bcl-2 and Bcl-xL, thereby supporting the death promoting ability of Bax. In order to evaluate its function in melanoma, we investigated the response after Nbk/Bik overexpression in cultured human melanoma cells and in a melanoma mouse model. Untransfected melanoma cell lines expressed Nbk/Bik only weakly at the mRNA and protein level. Conditional expression of Nbk/Bik by applying the inducible tetracycline-responsive expression system triggered apoptosis and enhanced sensitivity to proapoptotic stimuli as to agonistic CD95 activation and to chemotherapeutics etoposide, doxorubicin and pamidronate. For investigating the effects of Nbk/Bik in vivo, stably transfected melanoma cells were subcutaneously injected into nude mice. Significantly delayed tumor growth was the result when mice received doxycycline for induction of Nbk/Bik expression. By investigating the mechanism of Nbk/Bik-induced cell death, typical hallmarks of apoptosis such as DNA fragmentation and chromatin condensation were seen after induction. Interestingly, no indications for cytochrome c release and caspase processing were found, and selective caspase inhibition remained without effect. These data indicate the high potential of Nbk/Bik in regulating apoptosis in melanoma by a caspase-independent pathway and may corroborate the potency of novel antimelanoma strategies based on activation of BH3-only proteins such as Nbk/Bik.


Assuntos
Apoptose , Caspases/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Cromatina/metabolismo , Citocromos c/metabolismo , Difosfonatos/farmacologia , Doxorrubicina/farmacologia , Etoposídeo/farmacologia , Feminino , Citometria de Fluxo , Humanos , Marcação In Situ das Extremidades Cortadas , Injeções Subcutâneas , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pamidronato , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pele/metabolismo , Tetraciclina/farmacologia , Células Tumorais Cultivadas , Proteína X Associada a bcl-2/metabolismo , Receptor fas/metabolismo
13.
J Neurosci ; 23(26): 8872-80, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14523089

RESUMO

Tau-positive inclusions in oligodendrocytes are consistent neuropathological features of corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementias with Parkinsonism linked to chromosome 17. Here we show by immunohistochemistry that tau-positive oligodendroglial inclusion bodies also contain the small heat-shock protein (HSP) alphaB-crystallin but not HSP70. To study the molecular mechanisms underlying inclusion body formation, we engineered an oligodendroglia cell line (OLN-t40) to overexpress the longest human tau isoform. Treatment of OLN-t40 cells with okadaic acid (OA), an inhibitor of protein phosphatase 2A, caused tau hyperphosphorylation and a decrease in the binding of tau to microtubules. Simultaneously, tau-positive aggregates that also stained with the amyloid-binding dye thioflavin-S as well as with antibodies to tau and alphaB-crystallin were detected. However, they were only transiently expressed and were degraded within 24 hr. When the proteasomal apparatus was inhibited by carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG-132) after OA treatment, the aggregates were stabilized and were still detectable after 18 hr in the absence of OA. Incubation with MG-132 alone inhibited tau proteolysis and led to the induction of HSPs, including alphaB-crystallin and to its translocation to the perinuclear region, but did not induce the formation of thioflavin-S-positive aggregates. Hence, although tau hyperphosphorylation induced by protein phosphatase inhibition contributes to pathological aggregate formation, only hyperphosporylation of tau followed by proteasome inhibition leads to stable fibrillary deposits of tau similar to those observed in neurodegenerative diseases.


Assuntos
Corpos de Inclusão/metabolismo , Complexos Multienzimáticos/antagonistas & inibidores , Ácido Okadáico/farmacologia , Oligodendroglia/metabolismo , Proteínas tau/metabolismo , Benzotiazóis , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Cisteína Endopeptidases , Citoesqueleto/metabolismo , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes , Humanos , Imuno-Histoquímica , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/patologia , Leupeptinas/farmacologia , Microtúbulos/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma , Proteína Fosfatase 2 , Tauopatias/metabolismo , Tauopatias/patologia , Tiazóis , Cadeia B de alfa-Cristalina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA