Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 612(7941): 764-770, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477536

RESUMO

The ocean-atmosphere exchange of CO2 largely depends on the balance between marine microbial photosynthesis and respiration. Despite vast taxonomic and metabolic diversity among marine planktonic bacteria and archaea (prokaryoplankton)1-3, their respiration usually is measured in bulk and treated as a 'black box' in global biogeochemical models4; this limits the mechanistic understanding of the global carbon cycle. Here, using a technology for integrated phenotype analyses and genomic sequencing of individual microbial cells, we show that cell-specific respiration rates differ by more than 1,000× among prokaryoplankton genera. The majority of respiration was found to be performed by minority members of prokaryoplankton (including the Roseobacter cluster), whereas cells of the most prevalent lineages (including Pelagibacter and SAR86) had extremely low respiration rates. The decoupling of respiration rates from abundance among lineages, elevated counts of proteorhodopsin transcripts in Pelagibacter and SAR86 cells and elevated respiration of SAR86 at night indicate that proteorhodopsin-based phototrophy3,5-7 probably constitutes an important source of energy to prokaryoplankton and may increase growth efficiency. These findings suggest that the dependence of prokaryoplankton on respiration and remineralization of phytoplankton-derived organic carbon into CO2 for its energy demands and growth may be lower than commonly assumed and variable among lineages.


Assuntos
Organismos Aquáticos , Archaea , Bactérias , Ciclo do Carbono , Respiração Celular , Plâncton , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Plâncton/classificação , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , Água do Mar/microbiologia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Respiração Celular/fisiologia , Fotossíntese
2.
Proc Natl Acad Sci U S A ; 121(15): e2309636121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38573964

RESUMO

Rates of microbial processes are fundamental to understanding the significance of microbial impacts on environmental chemical cycling. However, it is often difficult to quantify rates or to link processes to specific taxa or individual cells, especially in environments where there are few cultured representatives with known physiology. Here, we describe the use of the redox-enzyme-sensitive molecular probe RedoxSensor™ Green to measure rates of anaerobic electron transfer physiology (i.e., sulfate reduction and methanogenesis) in individual cells and link those measurements to genomic sequencing of the same single cells. We used this method to investigate microbial activity in hot, anoxic, low-biomass (~103 cells mL-1) groundwater of the Death Valley Regional Flow System, California. Combining this method with electron donor amendment experiments and metatranscriptomics confirmed that the abundant spore formers including Candidatus Desulforudis audaxviator were actively reducing sulfate in this environment, most likely with acetate and hydrogen as electron donors. Using this approach, we measured environmental sulfate reduction rates at 0.14 to 26.9 fmol cell-1 h-1. Scaled to volume, this equates to a bulk environmental rate of ~103 pmol sulfate L-1 d-1, similar to potential rates determined with radiotracer methods. Despite methane in the system, there was no evidence for active microbial methanogenesis at the time of sampling. Overall, this method is a powerful tool for estimating species-resolved, single-cell rates of anaerobic metabolism in low-biomass environments while simultaneously linking genomes to phenomes at the single-cell level. We reveal active elemental cycling conducted by several species, with a large portion attributable to Ca. Desulforudis audaxviator.


Assuntos
Ecossistema , Meio Ambiente , Transporte de Elétrons , Sulfatos/química , Respiração Celular
4.
Environ Microbiol ; 23(7): 3923-3936, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33346395

RESUMO

Subseafloor oceanic crust is a vast yet poorly sampled habitat for life. Recent studies suggest that microbial composition in crustal habitats is variable in space and time, but biogeographic patterns are difficult to determine due to a paucity of data. To address this, we deployed hundreds of mineral colonization experiments at and below the seafloor for 4-6 years at North Pond, a borehole observatory network in cool (<10°C) and oxic oceanic crust on the western flank of the Mid-Atlantic Ridge. The overall community composition of mineral incubations reveals that colonization patterns are site dependent, with no correlation to mineral type. Only a few members of the Thioalkalispiraceae and Thioprofundaceae exhibited a mineral preference pattern, with generally higher abundance on metal sulphides compared to silicates, while taxa of the Gammaproteobacteria and Deltaproteobacteria were common in the colonization experiments. In comparison to datasets from other crustal habitats, broader biogeographic patterns of crustal communities emerge based on crustal habitat type (surface-attached communities versus fluid communities), redox environment and possibly crustal age. These comparisons suggest successional biogeography patterning that might be used as an indicator of how recently permeable pathways were established within oceanic crust.


Assuntos
Bactérias , Ecossistema , Bactérias/genética , Oceanos e Mares , Oxirredução , Silicatos
5.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32220840

RESUMO

The Atlantis Massif rises 4,000 m above the seafloor near the Mid-Atlantic Ridge and consists of rocks uplifted from Earth's lower crust and upper mantle. Exposure of the mantle rocks to seawater leads to their alteration into serpentinites. These aqueous geochemical reactions, collectively known as the process of serpentinization, are exothermic and are associated with the release of hydrogen gas (H2), methane (CH4), and small organic molecules. The biological consequences of this flux of energy and organic compounds from the Atlantis Massif were explored by International Ocean Discovery Program (IODP) Expedition 357, which used seabed drills to collect continuous sequences of shallow (<16 m below seafloor) marine serpentinites and mafic assemblages. Here, we report the census of microbial diversity in samples of the drill cores, as measured by environmental 16S rRNA gene amplicon sequencing. The problem of contamination of subsurface samples was a primary concern during all stages of this project, starting from the initial study design, continuing to the collection of samples from the seafloor, handling the samples shipboard and in the lab, preparing the samples for DNA extraction, and analyzing the DNA sequence data. To distinguish endemic microbial taxa of serpentinite subsurface rocks from seawater residents and other potential contaminants, the distributions of individual 16S rRNA gene sequences among all samples were evaluated, taking into consideration both presence/absence and relative abundances. Our results highlight a few candidate residents of the shallow serpentinite subsurface, including uncultured representatives of the Thermoplasmata, Acidobacteria, Acidimicrobia, and ChloroflexiIMPORTANCE The International Ocean Discovery Program Expedition 357-"Serpentinization and Life"-utilized seabed drills to collect rocks from the oceanic crust. The recovered rock cores represent the shallow serpentinite subsurface of the Atlantis Massif, where reactions between uplifted mantle rocks and water, collectively known as serpentinization, produce environmental conditions that can stimulate biological activity and are thought to be analogous to environments that were prevalent on the early Earth and perhaps other planets. The methodology and results of this project have implications for life detection experiments, including sample return missions, and provide a window into the diversity of microbial communities inhabiting subseafloor serpentinites.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota , Água do Mar/microbiologia , Oceano Atlântico , Oceanos e Mares , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
6.
Appl Environ Microbiol ; 81(17): 5927-37, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092463

RESUMO

Microaerophilic, neutrophilic, iron-oxidizing bacteria (FeOB) grow via the oxidation of reduced Fe(II) at or near neutral pH, in the presence of oxygen, making them relevant in numerous environments with elevated Fe(II) concentrations. However, the biochemical mechanisms for Fe(II) oxidation by these neutrophilic FeOB are unknown, and genetic markers for this process are unavailable. In the ocean, microaerophilic microorganisms in the genus Mariprofundus of the class Zetaproteobacteria are the only organisms known to chemolithoautotrophically oxidize Fe and concurrently biomineralize it in the form of twisted stalks of iron oxyhydroxides. The aim of this study was to identify highly expressed proteins associated with the electron transport chain of microaerophilic, neutrophilic FeOB. To this end, Mariprofundus ferrooxydans PV-1 was cultivated, and its proteins were extracted, assayed for redox activity, and analyzed via liquid chromatography-tandem mass spectrometry for identification of peptides. The results indicate that a cytochrome c4, cbb3-type cytochrome oxidase subunits, and an outer membrane cytochrome c were among the most highly expressed proteins and suggest an involvement in the process of aerobic, neutrophilic bacterial Fe oxidation. Proteins associated with alternative complex III, phosphate transport, carbon fixation, and biofilm formation were abundant, consistent with the lifestyle of Mariprofundus.


Assuntos
Ferro/metabolismo , Proteobactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Crescimento Quimioautotrófico , Dados de Sequência Molecular , Oxirredução , Proteobactérias/química , Proteobactérias/genética , Proteômica
7.
Nature ; 453(7195): 653-6, 2008 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-18509444

RESUMO

Oceanic lithosphere exposed at the sea floor undergoes seawater-rock alteration reactions involving the oxidation and hydration of glassy basalt. Basalt alteration reactions are theoretically capable of supplying sufficient energy for chemolithoautotrophic growth. Such reactions have been shown to generate microbial biomass in the laboratory, but field-based support for the existence of microbes that are supported by basalt alteration is lacking. Here, using quantitative polymerase chain reaction, in situ hybridization and microscopy, we demonstrate that prokaryotic cell abundances on seafloor-exposed basalts are 3-4 orders of magnitude greater than in overlying deep sea water. Phylogenetic analyses of basaltic lavas from the East Pacific Rise (9 degrees N) and around Hawaii reveal that the basalt-hosted biosphere harbours high bacterial community richness and that community membership is shared between these sites. We hypothesize that alteration reactions fuel chemolithoautotrophic microorganisms, which constitute a trophic base of the basalt habitat, with important implications for deep-sea carbon cycling and chemical exchange between basalt and sea water.


Assuntos
Biodiversidade , Sedimentos Geológicos/microbiologia , Biologia Marinha , Silicatos , Crescimento Quimioautotrófico , Genes Bacterianos/genética , Havaí , História Antiga , Dados de Sequência Molecular , Oceano Pacífico , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Silicatos/metabolismo , Microbiologia da Água
8.
ISME Commun ; 3(1): 10, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732595

RESUMO

The oceanic igneous crust is a vast reservoir for microbial life, dominated by diverse and active bacteria, archaea, and fungi. Archaeal and bacterial viruses were previously detected in oceanic crustal fluids at the Juan de Fuca Ridge (JdFR). Here we report the discovery of two eukaryotic Nucleocytoviricota genomes from the same crustal fluids by sorting and sequencing single virions. Both genomes have a tRNATyr gene with an intron (20 bps) at the canonical position between nucleotide 37 and 38, a common feature in eukaryotic and archaeal tRNA genes with short introns (<100 bps), and fungal genes acquired through horizontal gene transfer (HGT) events. The dominance of Ascomycota fungi as the main eukaryotes in crustal fluids and the evidence for HGT point to these fungi as the putative hosts, making these the first putative fungi-Nucleocytoviricota specific association. Our study suggests active host-viral dynamics for the only eukaryotic group found in the subsurface oceanic crust and raises important questions about the impact of viral infection on the productivity and biogeochemical cycling in this ecosystem.

9.
ISME J ; 17(9): 1406-1415, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37328571

RESUMO

After decades studying the microbial "deep biosphere" in subseafloor oceanic crust, the growth and life strategies in this anoxic, low energy habitat remain poorly described. Using both single cell genomics and metagenomics, we reveal the life strategies of two distinct lineages of uncultivated Aminicenantia bacteria from the basaltic subseafloor oceanic crust of the eastern flank of the Juan de Fuca Ridge. Both lineages appear adapted to scavenge organic carbon, as each have genetic potential to catabolize amino acids and fatty acids, aligning with previous Aminicenantia reports. Given the organic carbon limitation in this habitat, seawater recharge and necromass may be important carbon sources for heterotrophic microorganisms inhabiting the ocean crust. Both lineages generate ATP via several mechanisms including substrate-level phosphorylation, anaerobic respiration, and electron bifurcation driving an Rnf ion translocation membrane complex. Genomic comparisons suggest these Aminicenantia transfer electrons extracellularly, perhaps to iron or sulfur oxides consistent with mineralogy of this site. One lineage, called JdFR-78, has small genomes that are basal to the Aminicenantia class and potentially use "primordial" siroheme biosynthetic intermediates for heme synthesis, suggesting this lineage retain characteristics of early evolved life. Lineage JdFR-78 contains CRISPR-Cas defenses to evade viruses, while other lineages contain prophage that may help prevent super-infection or no detectable viral defenses. Overall, genomic evidence points to Aminicenantia being well adapted to oceanic crust environments by taking advantage of simple organic molecules and extracellular electron transport.


Assuntos
Bactérias , Sedimentos Geológicos , Sedimentos Geológicos/microbiologia , Oceanos e Mares , Bactérias/genética , Bactérias/metabolismo , Água do Mar/microbiologia , Carbono/metabolismo
10.
ISME J ; 17(6): 891-902, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37012337

RESUMO

The phyla Nitrospirota and Nitrospinota have received significant research attention due to their unique nitrogen metabolisms important to biogeochemical and industrial processes. These phyla are common inhabitants of marine and terrestrial subsurface environments and contain members capable of diverse physiologies in addition to nitrite oxidation and complete ammonia oxidation. Here, we use phylogenomics and gene-based analysis with ancestral state reconstruction and gene-tree-species-tree reconciliation methods to investigate the life histories of these two phyla. We find that basal clades of both phyla primarily inhabit marine and terrestrial subsurface environments. The genomes of basal clades in both phyla appear smaller and more densely coded than the later-branching clades. The extant basal clades of both phyla share many traits inferred to be present in their respective common ancestors, including hydrogen, one-carbon, and sulfur-based metabolisms. Later-branching groups, namely the more frequently studied classes Nitrospiria and Nitrospinia, are both characterized by genome expansions driven by either de novo origination or laterally transferred genes that encode functions expanding their metabolic repertoire. These expansions include gene clusters that perform the unique nitrogen metabolisms that both phyla are most well known for. Our analyses support replicated evolutionary histories of these two bacterial phyla, with modern subsurface environments representing a genomic repository for the coding potential of ancestral metabolic traits.


Assuntos
Bactérias , Evolução Biológica , Filogenia , Nitrogênio/metabolismo
11.
Environ Sci Technol ; 46(6): 3304-11, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22360427

RESUMO

Ubiquitous presence of microbes in aquatic systems and their inherent ability of biomineralization make them extremely important agents in the geochemical cycling of inorganic elements. However, the detailed mechanisms of environmental biomineralization (e.g., the actual reaction rates, the temporal and spatial dynamics of these processes) are largely unknown, because there are few adequate analytical techniques to observe the biogenic oxidation/reduction reactions in situ. Here, we report a novel technical approach to characterize specific biominerals associated with a target microbe on high spatial resolution. The technique was developed by combining directly in situ phylogenetic analysis, fluorescence in situ hybridization (FISH), with a synchrotron microprobe method, micro X-ray absorption fine structure spectroscopy (µ-XAFS), and was applied to iron mineral deposition by iron(II)-oxidizing bacteria (IOB) in environmental samples. In situ visualization of microbes revealed that in natural iron mats, Betaproteobacteria dominated by IOB were dominantly localized within 10 µm of the surface. Furthermore, in situ chemical speciation by the synchrotron microprobe suggested that the Fe local structure at the IOB accumulating parts was dominantly composed of short-ordered Fe-O(6) linkage, which is not observed in bulk iron mat samples. The present study indicates that coupled XAFS-FISH could be a potential technique to provide direct information on specific biogenic reaction mediated by target microorganism.


Assuntos
Bactérias/metabolismo , Compostos Férricos/metabolismo , Bactérias/classificação , Bactérias/genética , Hibridização in Situ Fluorescente , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Síncrotrons , Espectroscopia por Absorção de Raios X
12.
Front Microbiol ; 12: 738231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140689

RESUMO

Fluids circulating through oceanic crust play important roles in global biogeochemical cycling mediated by their microbial inhabitants, but studying these sites is challenged by sampling logistics and low biomass. Borehole observatories installed at the North Pond study site on the western flank of the Mid-Atlantic Ridge have enabled investigation of the microbial biosphere in cold, oxygenated basaltic oceanic crust. Here we test a methodology that applies redox-sensitive fluorescent molecules for flow cytometric sorting of cells for single cell genomic sequencing from small volumes of low biomass (approximately 103 cells ml-1) crustal fluid. We compare the resulting genomic data to a recently published paired metagenomic and metatranscriptomic analysis from the same site. Even with low coverage genome sequencing, sorting cells from less than one milliliter of crustal fluid results in similar interpretation of dominant taxa and functional profiles as compared to 'omics analysis that typically filter orders of magnitude more fluid volume. The diverse community dominated by Gammaproteobacteria, Bacteroidetes, Desulfobacterota, Alphaproteobacteria, and Zetaproteobacteria, had evidence of autotrophy and heterotrophy, a variety of nitrogen and sulfur cycling metabolisms, and motility. Together, results indicate fluorescence activated cell sorting methodology is a powerful addition to the toolbox for the study of low biomass systems or at sites where only small sample volumes are available for analysis.

13.
Front Microbiol ; 10: 1959, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31501654

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2018.01605.].

14.
Front Microbiol ; 10: 1983, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551949

RESUMO

The crustal subseafloor is the least explored and largest biome on Earth. Interrogating crustal life is difficult due to habitat inaccessibility, low-biomass and contamination challenges. Subseafloor observatories have facilitated the study of planktonic life in crustal aquifers, however, studies of life in crust-attached biofilms are rare. Here, we investigate biofilms grown on various minerals at different temperatures over 1-6 years at subseafloor observatories in the Eastern Pacific. To mitigate potential sequence contamination, we developed a new bioinformatics tool - TaxonSluice. We explore ecological factors driving community structure and potential function of biofilms by comparing our sequence data to previous amplicon and metagenomic surveys of this habitat. We reveal that biofilm community structure is driven by temperature rather than minerology, and that rare planktonic lineages colonize the crustal biofilms. Based on 16S rRNA gene overlap, we partition metagenome assembled genomes into planktonic and biofilm fractions and suggest that there are functional differences between these community types, emphasizing the need to separately examine each to accurately describe subseafloor microbe-rock-fluid processes. Lastly, we report that some rare lineages present in our warm and anoxic study site are also found in cold and oxic crustal fluids in the Mid-Atlantic Ridge, suggesting global crustal biogeography patterns.

15.
ISME J ; 13(6): 1457-1468, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728468

RESUMO

The exploration of Earth's terrestrial subsurface biosphere has led to the discovery of several new archaeal lineages of evolutionary significance. Similarly, the deep subseafloor crustal biosphere also harbors many unique, uncultured archaeal taxa, including those belonging to Candidatus Hydrothermarchaeota, formerly known as Marine Benthic Group-E. Recently, Hydrothermarchaeota was identified as an abundant lineage of Juan de Fuca Ridge flank crustal fluids, suggesting its adaptation to this extreme environment. Through the investigation of single-cell and metagenome-assembled genomes, we provide insight into the lineage's evolutionary history and metabolic potential. Phylogenomic analysis reveals the Hydrothermarchaeota to be an early-branching archaeal phylum, branching between the superphylum DPANN, Euryarchaeota, and Asgard lineages. Hydrothermarchaeota genomes suggest a potential for dissimilative and assimilative carbon monoxide oxidation (carboxydotrophy), as well as sulfate and nitrate reduction. There is also a prevalence of chemotaxis and motility genes, indicating adaptive strategies for this nutrient-limited fluid-rock environment. These findings provide the first genomic interpretations of the Hydrothermarchaeota phylum and highlight the anoxic, hot, deep marine crustal biosphere as an important habitat for understanding the evolution of early life.


Assuntos
Archaea/isolamento & purificação , Archaea/metabolismo , Monóxido de Carbono/metabolismo , Archaea/classificação , Archaea/genética , Ecossistema , Ambientes Extremos , Genômica , Sedimentos Geológicos/microbiologia , Metagenoma , Nitratos/metabolismo , Filogenia , Sulfatos/metabolismo
16.
Front Microbiol ; 9: 1605, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072971

RESUMO

Earth's subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well as subglacial lakes and the subsurface of polar desert soils. These low energy subsurface environments are therefore uniquely positioned for examining minimum energetic requirements and adaptations for chemotrophic life. Current targets for astrobiology investigations of extant life are planetary bodies with largely inhospitable surfaces, such as Mars, Europa, and Enceladus. Subsurface environments on Earth thus serve as analogs to explore possibilities of subsurface life on extraterrestrial bodies. The purpose of this review is to provide an overview of subsurface environments as potential analogs, and the features of microbial communities existing in these low energy environments, with particular emphasis on how they inform the study of energetic limits required for life. The thermodynamic energetic calculations presented here suggest that free energy yields of reactions and energy density of some metabolic redox reactions on Mars, Europa, Enceladus, and Titan could be comparable to analog environments in Earth's low energy subsurface habitats.

17.
Front Microbiol ; 9: 1249, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951048

RESUMO

Cool hydrothermal systems (CHSs) are prevalent across the seafloor and discharge fluid volumes that rival oceanic input from rivers, yet the microbial ecology of these systems are poorly constrained. The Dorado Outcrop on the ridge flank of the Cocos Plate in the northeastern tropical Pacific Ocean is the first confirmed CHS, discharging minimally altered <15°C fluid from the shallow lithosphere through diffuse venting and seepage. In this paper, we characterize the resident sediment microbial communities influenced by cool hydrothermal advection, which is evident from nitrate and oxygen concentrations. 16S rRNA gene sequencing revealed that Thaumarchaea, Proteobacteria, and Planctomycetes were the most abundant phyla in all sediments across the system regardless of influence from seepage. Members of the Thaumarchaeota (Marine Group I), Alphaproteobacteria (Rhodospirillales), Nitrospirae, Nitrospina, Acidobacteria, and Gemmatimonadetes were enriched in the sediments influenced by CHS advection. Of the various geochemical parameters investigated, nitrate concentrations correlated best with microbial community structure, indicating structuring based on seepage of nitrate-rich fluids. A comparison of microbial communities from hydrothermal sediments, seafloor basalts, and local seawater at Dorado Outcrop showed differences that highlight the distinct niche space in CHS. Sediment microbial communities from Dorado Outcrop differ from those at previously characterized, warmer CHS sediment, but are similar to deep-sea sediment habitats with surficial ferromanganese nodules, such as the Clarion Clipperton Zone. We conclude that cool hydrothermal venting at seafloor outcrops can alter the local sedimentary oxidation-reduction pathways, which in turn influences the microbial communities within the fluid discharge affected sediment.

18.
Front Microbiol ; 8: 1434, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824568

RESUMO

Microbial communities living in deeply buried sediment may be adapted to long-term energy limitation as they are removed from new detrital energy inputs for thousands to millions of years. However, sediment layers near the underlying oceanic crust may receive inputs from below that influence microbial community structure and/or activity. As part of the Census of Deep Life, we used 16S rRNA gene tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement interface samples from the subsurface of the Juan de Fuca Ridge flank (collected on IODP Expedition 327) to examine this possible basement influence on deep sediment communities. This area experiences rapid sedimentation, with an underlying basaltic crust that hosts a dynamic flux of hydrothermal fluids that diffuse into the sediment. Chloroflexi sequences dominated tag libraries in all sediment samples, with variation in the abundance of other bacterial groups (e.g., Actinobacteria, Aerophobetes, Atribacteria, Planctomycetes, and Nitrospirae). These variations occur in relation to the type of sediment (clays versus carbonate-rich) and the depth of sample origin, and show no clear connection to the distance from the discharge outcrop or to basement fluid microbial communities. Actinobacteria-related sequences dominated the basalt libraries, but these should be viewed cautiously due to possibilities for imprinting from contamination. Our results indicate that proximity to basement or areas of seawater recharge is not a primary driver of microbial community composition in basal sediment, even though fluids diffusing from basement into sediment may stimulate microbial activity.

19.
Front Microbiol ; 7: 633, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199959

RESUMO

Oceanic crust constitutes the largest aquifer system on Earth, and microbial activity in this environment has been inferred from various geochemical analyses. However, empirical documentation of microbial activity from subsurface basalts is still lacking, particularly in the cool (<25°C) regions of the crust, where are assumed to harbor active iron-oxidizing microbial communities. To test this hypothesis, we report the enrichment and isolation of crust-associated microorganisms from North Pond, a site of relatively young and cold basaltic basement on the western flank of the Mid-Atlantic Ridge that was sampled during Expedition 336 of the Integrated Ocean Drilling Program. Enrichment experiments with different carbon (bicarbonate, acetate, methane) and nitrogen (nitrate and ammonium) sources revealed significant cell growth (one magnitude higher cell abundance), higher intracellular DNA content, and increased Fe(3+)/ΣFe ratios only when nitrogen substrates were added. Furthermore, a Marinobacter strain with neutrophilic iron-oxidizing capabilities was isolated from the basalt. This work reveals that basalt-associated microorganisms at North Pond had the potential for activity and that microbial growth could be stimulated by in vitro nitrogen addition. Furthermore, iron oxidation is supported as an important process for microbial communities in subsurface basalts from young and cool ridge flank basement.

20.
Front Microbiol ; 7: 396, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27064928

RESUMO

To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for 1 year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank) as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B). In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion. In contrast, the Hole U1301A deployment supported biofilms dominated by Epsilonproteobacteria (43.5% of 370 16S rRNA gene clone sequences) and Gammaproteobacteria (29.3%). Sequence analysis revealed overlap in microbial communities between different minerals incubated at the Hole U1301A wellhead, indicating that mineralogy did not separate biofilm structure within the 1-year colonization experiment. Differences in the Hole U1301A wellhead biofilm community composition relative to previous studies from within the borehole using similar mineral substrates suggest that temperature and the diffusion of dissolved oxygen through plastic components influenced the mineral colonization experiments positioned at the wellhead. This highlights the capacity of low abundance crustal fluid taxa to rapidly establish communities on diverse mineral substrates under changing environmental conditions such as from temperature and oxygen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA