Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(3): e3002020, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928033

RESUMO

Anaerobic bacteria are responsible for half of all pulmonary infections. One such pathogen is Streptococcus pneumoniae (Spn), a leading cause of community-acquired pneumonia, bacteremia/sepsis, and meningitis. Using a panel of isogenic mutants deficient in lactate, acetyl-CoA, and ethanol fermentation, as well as pharmacological inhibition, we observed that NAD(H) redox balance during fermentation was vital for Spn energy generation, capsule production, and in vivo fitness. Redox balance disruption in fermentation pathway-specific fashion substantially enhanced susceptibility to killing in antimicrobial class-specific manner. Blocking of alcohol dehydrogenase activity with 4-methylpyrazole (fomepizole), an FDA-approved drug used as an antidote for toxic alcohol ingestion, enhanced susceptibility of multidrug-resistant Spn to erythromycin and reduced bacterial burden in the lungs of mice with pneumonia and prevented the development of invasive disease. Our results indicate fermentation enzymes are de novo targets for antibiotic development and a novel strategy to combat multidrug-resistant pathogens.


Assuntos
NAD , Streptococcus pneumoniae , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Eritromicina/farmacologia , Pulmão
2.
J Bacteriol ; 206(6): e0005924, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38809015

RESUMO

The major human pathogen Streptococcus pneumoniae has been the subject of intensive clinical and basic scientific study for over 140 years. In multiple instances, these efforts have resulted in major breakthroughs in our understanding of basic biological principles as well as fundamental tenets of bacterial pathogenesis, immunology, vaccinology, and genetics. Discoveries made with S. pneumoniae have led to multiple major public health victories that have saved the lives of millions. Studies on S. pneumoniae continue today, where this bacterium is being used to dissect the impact of the host on disease processes, as a powerful cell biology model, and to better understand the consequence of human actions on commensal bacteria at the population level. Herein we review the major findings, i.e., puzzle pieces, made with S. pneumoniae and how, over the years, they have come together to shape our understanding of this bacterium's biology and the practice of medicine and modern molecular biology.


Assuntos
Bacteriologia , Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Humanos , Bacteriologia/história , História do Século XIX , História do Século XX , História do Século XXI , Infecções Pneumocócicas/história , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
3.
Appl Environ Microbiol ; 90(9): e0101024, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39140740

RESUMO

The ability to genetically manipulate bacteria is a staple of modern molecular microbiology. Since the 2000s, marker-less mutants of Streptococcus pneumoniae (Spn) have been made by allelic exchange predominantly using the kanR-rpsL cassette known as "Janus." The conventional Janus protocol involves two transformation steps using multiple PCR-assembled products containing the Janus cassette and the target gene's flanking DNA. We present an innovative strategy to achieve marker-less allelic replacement through a single transformation step. Our strategy involves integrating an additional copy of the target's downstream region before the Janus cassette, leading to a modified genetic arrangement. This single modification reduced the number of required PCR fragments from five to four, lowered the number of assembly reactions from two to one, and simplified the transformation process to a single step. To validate the efficacy of our approach, we implemented this strategy to delete in Spn serotype 4 strain TIGR4 the virulence gene pspA, the entire capsular polysaccharide synthesis locus cps4, and to introduce a single-nucleotide replacement into the chromosome. Notably, beyond streamlining the procedure, our method markedly reduced false positives typically encountered during negative selection with streptomycin when employing the traditional Janus protocol. Furthermore, and as consequence of reducing the amount of exogenous DNA required for construct synthesis, we show that our new method is amendable to the use of commercially available synthetic DNA for construct creation, further reducing the work needed to obtain a mutant. Our streamlined strategy, termed easyJanus, substantially expedites the genetic manipulation of Spn facilitating future research endeavors. IMPORTANCE: We introduce a new strategy aimed at streamlining the process for marker-less allelic replacement in Streptococcus pneumoniae, a Gram-positive bacterium and leading cause of pneumonia, meningitis, and ear infections. Our approach involves a modified genetic arrangement of the Janus cassette to facilitate self-excision during the segregation step. Since this new method reduces the amount of exogenous DNA required, it is highly amendable to the use of synthetic DNA for construction of the mutagenic construct. Our streamlined strategy, called easyJanus, offers significant time and cost savings while concurrently enhancing the efficiency of obtaining marker-less allelic replacement in S. pneumoniae.


Assuntos
Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Transformação Bacteriana , Alelos , Proteínas de Bactérias/genética , Marcadores Genéticos
4.
Crit Care ; 27(1): 34, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691080

RESUMO

BACKGROUND: Recent single-center reports have suggested that community-acquired bacteremic co-infection in the context of Coronavirus disease 2019 (COVID-19) may be an important driver of mortality; however, these reports have not been validated with a multicenter, demographically diverse, cohort study with data spanning the pandemic. METHODS: In this multicenter, retrospective cohort study, inpatient encounters were assessed for COVID-19 with community-acquired bacteremic co-infection using 48-h post-admission blood cultures and grouped by: (1) confirmed co-infection [recovery of bacterial pathogen], (2) suspected co-infection [negative culture with ≥ 2 antimicrobials administered], and (3) no evidence of co-infection [no culture]. The primary outcomes were in-hospital mortality, ICU admission, and mechanical ventilation. COVID-19 bacterial co-infection risk factors and impact on primary outcomes were determined using multivariate logistic regressions and expressed as adjusted odds ratios with 95% confidence intervals (Cohort, OR 95% CI, Wald test p value). RESULTS: The studied cohorts included 13,781 COVID-19 inpatient encounters from 2020 to 2022 in the University of Alabama at Birmingham (UAB, n = 4075) and Ochsner Louisiana State University Health-Shreveport (OLHS, n = 9706) cohorts with confirmed (2.5%), suspected (46%), or no community-acquired bacterial co-infection (51.5%) and a comparison cohort consisting of 99,170 inpatient encounters from 2010 to 2019 (UAB pre-COVID-19 pandemic cohort). Significantly increased likelihood of COVID-19 bacterial co-infection was observed in patients with elevated ≥ 15 neutrophil-to-lymphocyte ratio (UAB: 1.95 [1.21-3.07]; OLHS: 3.65 [2.66-5.05], p < 0.001 for both) within 48-h of hospital admission. Bacterial co-infection was found to confer the greatest increased risk for in-hospital mortality (UAB: 3.07 [2.42-5.46]; OLHS: 4.05 [2.29-6.97], p < 0.001 for both), ICU admission (UAB: 4.47 [2.87-7.09], OLHS: 2.65 [2.00-3.48], p < 0.001 for both), and mechanical ventilation (UAB: 3.84 [2.21-6.12]; OLHS: 2.75 [1.87-3.92], p < 0.001 for both) across both cohorts, as compared to other risk factors for severe disease. Observed mortality in COVID-19 bacterial co-infection (24%) dramatically exceeds the mortality rate associated with community-acquired bacteremia in pre-COVID-19 pandemic inpatients (5.9%) and was consistent across alpha, delta, and omicron SARS-CoV-2 variants. CONCLUSIONS: Elevated neutrophil-to-lymphocyte ratio is a prognostic indicator of COVID-19 bacterial co-infection within 48-h of admission. Community-acquired bacterial co-infection, as defined by blood culture-positive results, confers greater increased risk of in-hospital mortality, ICU admission, and mechanical ventilation than previously described risk factors (advanced age, select comorbidities, male sex) for COVID-19 mortality, and is independent of SARS-CoV-2 variant.


Assuntos
Bacteriemia , COVID-19 , Coinfecção , Infecções Comunitárias Adquiridas , Humanos , Masculino , SARS-CoV-2 , Estudos de Coortes , Estudos Retrospectivos , Respiração Artificial , Pandemias , Mortalidade Hospitalar , Bactérias , Fatores de Risco , Unidades de Terapia Intensiva
5.
Proc Natl Acad Sci U S A ; 117(52): 33507-33518, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318198

RESUMO

Streptococcus pneumoniae (Spn) colonizes the nasopharynx and can cause pneumonia. From the lungs it spreads to the bloodstream and causes organ damage. We characterized the in vivo Spn and mouse transcriptomes within the nasopharynx, lungs, blood, heart, and kidneys using three Spn strains. We identified Spn genes highly expressed at all anatomical sites and in an organ-specific manner; highly expressed genes were shown to have vital roles with knockout mutants. The in vivo bacterial transcriptome during colonization/disease was distinct from previously reported in vitro transcriptomes. Distinct Spn and host gene-expression profiles were observed during colonization and disease states, revealing specific genes/operons whereby Spn adapts to and influences host sites in vivo. We identified and experimentally verified host-defense pathways induced by Spn during invasive disease, including proinflammatory responses and the interferon response. These results shed light on the pathogenesis of Spn and identify therapeutic targets.


Assuntos
Interações Hospedeiro-Patógeno/genética , Infecções Pneumocócicas/genética , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Transcriptoma/genética , Animais , Contagem de Colônia Microbiana , Feminino , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Interferons/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Filogenia , Análise de Componente Principal , Transdução de Sinais , Streptococcus pneumoniae/crescimento & desenvolvimento
6.
J Bacteriol ; 204(7): e0011422, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35658521

RESUMO

The oxylipin-dependent quorum-sensing system (ODS) of Pseudomonas aeruginosa relies on the production and sensing of two extracellular oxylipins, 10S-hydroxy-(8E)-octadecenoic acid (10-HOME) and 7S,10S-dihydroxy-(8E)-octadecenoic acid (7,10-DiHOME). Here, we implemented a genetic screen of P. aeruginosa strain PAO1 aimed to identify genes required for 10-HOME and 7,10-DiHOME production. Among the 14 genes identified, four encoded previously known components of the ODS and 10 encoded parts of the Xcp type II secretion system (T2SS). We subsequently created a clean xcpQ deletion mutant, which encodes the necessary outer membrane component of Xcp, and found it recapitulated the impaired functionality of the T2SS transposon mutants. Further studies showed that the ΔxcpQ mutant was unable to secrete the oxylipin synthase enzymes across the outer membrane. Specifically, immunoblotting for OdsA, which is responsible for the generation of 10-HOME from oleic acid, detected the enzyme in supernatants from wild-type PAO1 but not ΔxcpQ cultures. Likewise, chromatography of supernatants found that 10-HOME was not in supernatants collected from the ΔxcpQ mutant. Accordingly, diol synthase activity was increased in the periplasm of ΔxcpQ mutant consistent with a stoppage in its transport. Importantly, after exposure of the ΔxcpQ mutant to exogenous 10-HOME and 7,10-DiHOME, the ODS effector genes become active; thus, the sensing component of the ODS does not involve the T2SS. Finally, we observed that Xcp contributed to robust in vitro and in vivo biofilm formation in oleic acid availability- and ODS-dependent manner. Thus, T2SS-mediated transport of the oxylipin synthase enzymes to outside the bacterial cell is required for ODS functionality. IMPORTANCE We previously showed that the ODS of P. aeruginosa produces and responds to oxylipins derived from host oleic acid by enhancing biofilm formation and virulence. Here, we developed a genetic screen strategy to explore the molecular basis for oxylipins synthesis and detection. Unexpectedly, we found that the ODS autoinducer synthases cross the outer membrane using the Xcp type 2 secretion system (T2SS) of P. aeruginosa, and so the biosynthesis of oxylipins occurs extracellularly. T2SS promoted biofilm formation in the presence of oleic acid as a result of ODS activation. Our results identify two new T2SS secreted proteins in P. aeruginosa and reveal a new way by which this important opportunistic pathogen interacts with the host environment.


Assuntos
Sistemas de Secreção Tipo II , Proteínas de Bactérias/metabolismo , Ácido Oleico/metabolismo , Oxilipinas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo II/metabolismo
7.
Infect Immun ; 90(1): e0045121, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34748366

RESUMO

Streptococcus pneumoniae colonizes the nasopharynx asymptomatically but can also cause severe life-threatening disease. Importantly, stark differences in carbohydrate availability exist between the nasopharynx and invasive disease sites, such as the bloodstream, which most likely impact S. pneumoniae's behavior. Herein, using chemically defined medium (CDM) supplemented with physiological levels of carbohydrates, we examined how anatomical site-specific carbohydrate availability impacted S. pneumoniae physiology and virulence. S. pneumoniae cells grown in CDM modeling the nasopharynx (CDM-N) had reduced metabolic activity and a lower growth rate, demonstrated mixed acid fermentation with marked H2O2 production, and were in a carbon-catabolite repression (CCR)-derepressed state versus S. pneumoniae cells grown in CDM modeling blood (CDM-B). Using transcriptome sequencing (RNA-seq), we determined the transcriptome for the S. pneumoniae wild-type (WT) strain and its isogenic CCR-deficient mutant in CDM-N and CDM-B. Genes with altered expression as a result of changes in carbohydrate availability or catabolite control protein deficiency, respectively, were primarily involved in carbohydrate metabolism, but also encoded established virulence determinants, such as polysaccharide capsule and surface adhesins. We confirmed that anatomical site-specific carbohydrate availability directly influenced established S. pneumoniae virulence traits. S. pneumoniae cells grown in CDM-B formed shorter chains, produced more capsule, were less adhesive, and were more resistant to macrophage killing in an opsonophagocytosis assay. Moreover, growth of S. pneumoniae in CDM-N or CDM-B prior to the challenge of mice impacted relative fitness in a colonization model and invasive disease model, respectively. Thus, anatomical site-specific carbohydrate availability alters S. pneumoniae physiology and virulence, in turn promoting anatomical site-specific fitness.


Assuntos
Adaptação Fisiológica , Metabolismo dos Carboidratos , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Animais , Aderência Bacteriana , Feminino , Masculino , Camundongos , Especificidade de Órgãos , Virulência , Fatores de Virulência
8.
Clin Infect Dis ; 72(11): e711-e719, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32964223

RESUMO

BACKGROUND: Up to 30% of patients admitted to hospitals with invasive pneumococcal disease (IPD) experience major adverse cardiovascular event (MACE) including new/worsening heart failure, new/worsening arrhythmia, and/or myocardial infarction. Streptococcus pneumoniae (Spn) is the most frequently isolated bacterial pathogen among community-acquired pneumonia (CAP) patients and the only etiological agent linked independently to MACE. Nevertheless, no clinical data exist identifying which serotypes of Spn are principally responsible for MACE. METHODS: This was an observational multicenter retrospective study conducted through the Public Health Secretary of Bogotá, Colombia. We included patients with a confirmed clinical diagnosis of IPD with record of pneumococcal serotyping and clinical information between 2012 and 2019. Spn were serotyped using the quellung method by the National Center of Microbiology. MACE were determined by a retrospective chart review. RESULTS: The prevalence of MACE was 23% (71/310) in IPD patients and 28% (53/181) in patients admitted for CAP. The most prevalent S. pneumoniae serotype identified in our study was the 19A, responsible for the 13% (42/310) of IPD in our cohort, of which 21% (9/42) presented MACE. Serotypes independently associated with MACE in IPD patients were serotype 3 (odds ratio [OR] 1, 48; 95% confidence interval [CI] [1.21-2.27]; P = .013) and serotype 9n (OR 1.29; 95% CI [1.08-2.24]; P = .020). Bacteremia occurred in 87% of patients with MACE. Moreover, serum concentrations of C-reactive protein were elevated in patients with MACE versus in non-MACE patients (mean [standard deviation], 138 [145] vs 73 [106], P = .01). CONCLUSIONS: MACE are common during IPD with serotype 3 and 9n independently of frequency.


Assuntos
Insuficiência Cardíaca , Infecções Pneumocócicas , Colômbia , Humanos , Lactente , Vacinas Pneumocócicas , Estudos Retrospectivos , Sorogrupo , Sorotipagem
9.
J Infect Dis ; 222(3): 372-380, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-31605125

RESUMO

Pneumococcal conjugate vaccines have been successful, but their use has increased infections by nonvaccine serotypes. Oral streptococci often harbor capsular polysaccharide (PS) synthesis loci (cps). Although this has not been observed in nature, if pneumococcus can replace its cps with oral streptococcal cps, it may increase its serotype repertoire. In the current study, we showed that oral Streptococcus strain SK95 and pneumococcal strain D39 both produce structurally identical capsular PS, and their genetic backgrounds influence the amount of capsule production and shielding from nonspecific killing. SK95 is avirulent in a well-established in vivo mouse model. When acapsular pneumococcus was transformed with SK95 cps, the transformant became virulent and killed all mice. Thus, cps from oral Streptococcus strains can make acapsular pneumococcus virulent, and interspecies cps transfer should be considered a potential mechanism of serotype replacement. Our findings, along with publications from the US Centers for Disease Control and Prevention, highlight potential limitations of the 2013 World Health Organization criterion for studying pneumococcal serotypes carried without isolating bacteria. We show that an oral streptococcal strain, SK95, and a pneumococcal strain, D39, both produce chemically identical capsular PS. We also show that transferring SK95 cps into noncapsulated, avirulent pneumococcus gave it the capacity for virulence in a mouse model.


Assuntos
Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Sorogrupo , Streptococcus/classificação , Vacinas Conjugadas/imunologia , Administração Oral , Animais , Cápsulas Bacterianas/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/administração & dosagem , Polissacarídeos Bacterianos/imunologia , Streptococcus/imunologia , Virulência
10.
J Infect Dis ; 222(11): 1882-1893, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32492702

RESUMO

BACKGROUND: Streptococcus pneumoniae infection can result in bacteremia with devastating consequences including heart damage. Necroptosis is a proinflammatory form of cell death instigated by pore-forming toxins such as S. pneumoniae pneumolysin. Necroptosis-inhibiting drugs may lessen organ damage during invasive pneumococcal disease (IPD). METHODS: In vitro experiments were carried out with human and mouse cardiomyocytes. Long-term cardiac damage was assessed using high-resolution echocardiography in ampicillin-rescued mice 3 months after challenge with S. pneumoniae. Ponatinib, a necroptosis-inhibiting and Food and Drug Administration-approved drug for lymphocytic leukemia treatment, was administered intraperitoneally alongside ampicillin to test its therapeutic efficacy. Histology of heart sections included hematoxylin-eosin staining for overt damage, immunofluorescence for necroptosis, and Sirius red/fast green staining for collagen deposition. RESULTS: Cardiomyocyte death and heart damage was due to pneumolysin-mediated necroptosis. IPD leads to long-term cardiac damage, as evidenced by de novo collagen deposition in mouse hearts and a decrease in fractional shortening. Adjunct necroptosis inhibition reduced the number of S. pneumoniae foci observed in hearts of acutely infected mice and serum levels of troponin I. Ponatinib reduced collagen deposition and protected heart function in convalescence. CONCLUSIONS: Acute and long-term cardiac damage incurred during IPD is due in part to cardiomyocyte necroptosis. Necroptosis inhibitors may be a viable adjunct therapy.


Assuntos
Coração , Necroptose , Pneumonia Pneumocócica/complicações , Animais , Bacteriemia , Morte Celular , Modelos Animais de Doenças , Feminino , Imidazóis , Leucemia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas , Proteínas Quinases , Piridazinas , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Streptococcus pneumoniae
11.
Curr Opin Infect Dis ; 33(3): 238-243, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304469

RESUMO

PURPOSE OF REVIEW: The human body plays host to bacterial biofilms across diverse anatomical sites. The treatment of pathogenic biofilm infection is confounded by their high rate of antibiotic resistance. Therefore, it is critical to understand the interplay between these biofilms and the host immune system to develop new tactics to combat these infections. RECENT FINDINGS: Bacterial biofilms and the components they produce affect and are affected by the host immune system. Host anatomical sites represent distinct niches in which defined bacterial biofilms are able to form and interact with the host immune system. For persistent colonization to occur, the bacteria must either avoid or suppress the host immune system, or induce an immune response that facilitates their perpetuation. SUMMARY: Commensal bacterial biofilms form a protective barrier against colonization by pathogens. Using similar mechanisms, bacteria modulate the immune system to orchestrate persistence and sometimes disease. Clinicians must balance the need to avoid disturbing beneficial commensal biofilms with the difficulty in preventing or treating pathogenic bacterial biofilms such as those that develop on medical implants and open wounds.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Imunomodulação , Próteses e Implantes/microbiologia , Farmacorresistência Bacteriana , Humanos , Imunidade/efeitos dos fármacos
12.
Microb Pathog ; 141: 103979, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31954822

RESUMO

PURPOSE: The aim of this study was to assess if long-term supplementation of omega-3 fatty acids or a diet rich in omega-6 fatty acids ameliorates disease severity in a murine model of pneumococcal pneumonia. We hypothesize that long-term dietary supplementation of omega-3 fatty acids will reduce inflammation, disease severity and improve survival compared to omega-6 fatty acids. METHODS: Mice receiving diets supplemented with Omega-3 or Omega-6 for two months were intranasally infected with Streptococcus pneumoniae. We analyzed survival, bacterial burden, histopathology and inflammatory biomarkers. RESULTS: Our results showed that Omega-3 supplementation had increased survival (p = 0.005), less bacteremia (p = 0.0001) and lower bacterial burden in the lungs (p = 0.0002) when compared to the Omega-6 supplementation. Overall, Omega-3 reduced lung pathology, in particular peribronchial inflammation and cell death. Analyses of lung homogenates showed the Omega-3 cohort had decreased levels of the inflammatory cytokine interleukin-6 and an increase in anti-inflammatory cytokine interleukin-10. CONCLUSIONS: Supplementation of mouse diets with Omega-3 fatty acids improved survival, bacterial invasion in the blood and lungs as well as decreased overall lung tissue inflammation and cell death when compared to the Omega-6 supplemented diets. Translation of these findings in humans may improve outcomes of patients at risk for pneumonia.


Assuntos
Anti-Inflamatórios/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Ração Animal , Animais , Carga Bacteriana , Suplementos Nutricionais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Mortalidade , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/mortalidade , Pneumonia Pneumocócica/patologia , Resultado do Tratamento
13.
J Bacteriol ; 201(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31405914

RESUMO

Streptococcus pneumoniae rapidly kills Staphylococcus aureus by producing membrane-permeable hydrogen peroxide (H2O2). The mechanism by which S. pneumoniae-produced H2O2 mediates S. aureus killing was investigated. An in vitro model that mimicked S. pneumoniae-S. aureus contact during colonization of the nasopharynx demonstrated that S. aureus killing required outcompeting densities of S. pneumoniae Compared to the wild-type strain, isogenic S. pneumoniae ΔlctO and S. pneumoniae ΔspxB, both deficient in production of H2O2, required increased density to kill S. aureus While residual H2O2 activity produced by single mutants was sufficient to eradicate S. aureus, an S. pneumoniae ΔspxB ΔlctO double mutant was unable to kill S. aureus A collection of 20 diverse methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains showed linear sensitivity (R2 = 0.95) for S. pneumoniae killing, but the same strains had different susceptibilities when challenged with pure H2O2 (5 mM). There was no association between the S. aureus clonal complex and sensitivity to either S. pneumoniae or H2O2 To kill S. aureus, S. pneumoniae produced ∼180 µM H2O2 within 4 h of incubation, while the killing-defective S. pneumoniae ΔspxB and S. pneumoniae ΔspxB ΔlctO mutants produced undetectable levels. Remarkably, a sublethal dose (1 mM) of pure H2O2 incubated with S. pneumoniae ΔspxB eradicated diverse S. aureus strains, suggesting that S. pneumoniae bacteria may facilitate conversion of H2O2 to a hydroxyl radical (·OH). Accordingly, S. aureus killing was completely blocked by incubation with scavengers of ·OH radicals, dimethyl sulfoxide (Me2SO), thiourea, or sodium salicylate. The ·OH was detected in S. pneumoniae cells by spin trapping and electron paramagnetic resonance. Therefore, S. pneumoniae produces H2O2, which is rapidly converted to a more potent oxidant, hydroxyl radicals, to rapidly intoxicate S. aureus strains.IMPORTANCEStreptococcus pneumoniae strains produce hydrogen peroxide (H2O2) to kill bacteria in the upper airways, including pathogenic Staphylococcus aureus strains. The targets of S. pneumoniae-produced H2O2 have not been discovered, in part because of a lack of knowledge about the underlying molecular mechanism. We demonstrated that an increased density of S. pneumoniae kills S. aureus by means of H2O2 produced by two enzymes, SpxB and LctO. We discovered that SpxB/LctO-produced H2O2 is converted into a hydroxyl radical (·OH) that rapidly intoxicates and kills S. aureus We successfully inhibited the toxicity of ·OH with three different scavengers and detected ·OH in the supernatant. The target(s) of the hydroxyl radicals represents a new alternative for the development of antimicrobials against S. aureus infections.


Assuntos
Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Streptococcus pneumoniae/metabolismo , Nasofaringe/metabolismo , Infecções Estafilocócicas/microbiologia
14.
PLoS Pathog ; 13(8): e1006582, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28841717

RESUMO

For over 130 years, invasive pneumococcal disease has been associated with the presence of extracellular planktonic pneumococci, i.e. diplococci or short chains in affected tissues. Herein, we show that Streptococcus pneumoniae that invade the myocardium instead replicate within cellular vesicles and transition into non-purulent biofilms. Pneumococci within mature cardiac microlesions exhibited salient biofilm features including intrinsic resistance to antibiotic killing and the presence of an extracellular matrix. Dual RNA-seq and subsequent principal component analyses of heart- and blood-isolated pneumococci confirmed the biofilm phenotype in vivo and revealed stark anatomical site-specific differences in virulence gene expression; the latter having major implications on future vaccine antigen selection. Our RNA-seq approach also identified three genomic islands as exclusively expressed in vivo. Deletion of one such island, Region of Diversity 12, resulted in a biofilm-deficient and highly inflammogenic phenotype within the heart; indicating a possible link between the biofilm phenotype and a dampened host-response. We subsequently determined that biofilm pneumococci released greater amounts of the toxin pneumolysin than did planktonic or RD12 deficient pneumococci. This allowed heart-invaded wildtype pneumococci to kill resident cardiac macrophages and subsequently subvert cytokine/chemokine production and neutrophil infiltration into the myocardium. This is the first report for pneumococcal biofilm formation in an invasive disease setting. We show that biofilm pneumococci actively suppress the host response through pneumolysin-mediated immune cell killing. As such, our findings contradict the emerging notion that biofilm pneumococci are passively immunoquiescent.


Assuntos
Biofilmes , Macrófagos/imunologia , Miocardite/imunologia , Miocardite/microbiologia , Infecções Pneumocócicas/imunologia , Transcriptoma , Animais , Western Blotting , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Infecções Pneumocócicas/genética , Análise de Componente Principal , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Virulência/genética , Virulência/imunologia
15.
Am J Respir Crit Care Med ; 198(2): 256-263, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29546996

RESUMO

Pneumonia is a complex pulmonary disease in need of new clinical approaches. Although triggered by a pathogen, pneumonia often results from dysregulations of host defense that likely precede infection. The coordinated activities of immune resistance and tissue resilience then dictate whether and how pneumonia progresses or resolves. Inadequate or inappropriate host responses lead to more severe outcomes such as acute respiratory distress syndrome and to organ dysfunction beyond the lungs and over extended time frames after pathogen clearance, some of which increase the risk for subsequent pneumonia. Improved understanding of such host responses will guide the development of novel approaches for preventing and curing pneumonia and for mitigating the subsequent pulmonary and extrapulmonary complications of pneumonia. The NHLBI assembled a working group of extramural investigators to prioritize avenues of host-directed pneumonia research that should yield novel approaches for interrupting the cycle of unhealthy decline caused by pneumonia. This report summarizes the working group's specific recommendations in the areas of pneumonia susceptibility, host response, and consequences. Overarching goals include the development of more host-focused clinical approaches for preventing and treating pneumonia, the generation of predictive tools (for pneumonia occurrence, severity, and outcome), and the elucidation of mechanisms mediating immune resistance and tissue resilience in the lung. Specific areas of research are highlighted as especially promising for making advances against pneumonia.


Assuntos
Suscetibilidade a Doenças/fisiopatologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Pulmão/fisiopatologia , Pneumonia/fisiopatologia , Relatório de Pesquisa , Síndrome do Desconforto Respiratório/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções Bacterianas/fisiopatologia , Congressos como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos , Viroses/fisiopatologia
16.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061707

RESUMO

Streptococcus pneumoniae (the pneumococcus) is the leading cause of community-acquired pneumonia and is now recognized to be a direct contributor to adverse acute cardiac events. During invasive pneumococcal disease, S. pneumoniae can gain access to the myocardium, kill cardiomyocytes, and form bacterium-filled "microlesions" causing considerable acute and long-lasting cardiac damage. While the molecular mechanisms responsible for bacterial translocation into the heart have been elucidated, the initial interactions of heart-invaded S. pneumoniae with cardiomyocytes remain unclear. In this study, we used a model of low multiplicity of S. pneumoniae infection with HL-1 mouse cardiomyocytes to investigate these early events. Using adhesion/invasion assays and immunofluorescent and transmission electron microscopy, we showed that S. pneumoniae rapidly adhered to and invaded cardiomyocytes. What is more, pneumococci existed as intravacuolar bacteria or escaped into the cytoplasm. Pulse-chase assays with BrdU confirmed intracellular replication of pneumococci within HL-1 cells. Using endocytosis inhibitors, bacterial isogenic mutants, and neutralizing antibodies against host proteins recognized by S. pneumoniae adhesins, we showed that S. pneumoniae uptake by cardiomyocytes is not through the well-studied canonical interactions identified for vascular endothelial cells. Indeed, S. pneumoniae invasion of HL-1 cells occurred through clathrin-mediated endocytosis (CME) and independently of choline binding protein A (CbpA)/laminin receptor, CbpA/polymeric immunoglobulin receptor, or cell wall phosphorylcholine/platelet-activating factor receptor. Subsequently, we determined that pneumolysin and streptococcal pyruvate oxidase-derived H2O2 production were required for cardiomyocyte killing. Finally, we showed that this cytotoxicity could be abrogated using CME inhibitors or antioxidants, attesting to intracellular replication of S. pneumoniae as a key first step in pneumococcal pathogenesis within the heart.


Assuntos
Peróxido de Hidrogênio , Miócitos Cardíacos/microbiologia , Infecções Pneumocócicas/microbiologia , Piruvato Oxidase/metabolismo , Streptococcus pneumoniae , Animais , Proteínas de Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/imunologia , Estreptolisinas/metabolismo
17.
Am J Respir Crit Care Med ; 196(5): 609-620, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28614669

RESUMO

RATIONALE: Up to one-third of patients hospitalized with pneumococcal pneumonia experience major adverse cardiac events (MACE) during or after pneumonia. In mice, Streptococcus pneumoniae can invade the myocardium, induce cardiomyocyte death, and disrupt cardiac function following bacteremia, but it is unknown whether the same occurs in humans with severe pneumonia. OBJECTIVES: We sought to determine whether S. pneumoniae can (1) translocate the heart, (2) induce cardiomyocyte death, (3) cause MACE, and (4) induce cardiac scar formation after antibiotic treatment during severe pneumonia using a nonhuman primate (NHP) model. METHODS: We examined cardiac tissue from six adult NHPs with severe pneumococcal pneumonia and three uninfected control animals. Three animals were rescued with antibiotics (convalescent animals). Electrocardiographic, echocardiographic, and serum biomarkers of cardiac damage were measured (troponin T, N-terminal pro-brain natriuretic peptide, and heart-type fatty acid binding protein). Histological examination included hematoxylin and eosin staining, immunofluorescence, immunohistochemistry, picrosirius red staining, and transmission electron microscopy. Immunoblots were used to assess the underlying mechanisms. MEASUREMENTS AND MAIN RESULTS: Nonspecific ischemic alterations were detected by electrocardiography and echocardiography. Serum levels of troponin T and heart-type fatty acid binding protein were increased (P < 0.05) after pneumococcal infection in both acutely ill and convalescent NHPs. S. pneumoniae was detected in the myocardium of all NHPs with acute severe pneumonia. Necroptosis and apoptosis were detected in the myocardium of both acutely ill and convalescent NHPs. Evidence of cardiac scar formation was observed only in convalescent animals by transmission electron microscopy and picrosirius red staining. CONCLUSIONS: S. pneumoniae invades the myocardium and induces cardiac injury with necroptosis and apoptosis, followed by cardiac scarring after antibiotic therapy, in an NHP model of severe pneumonia.


Assuntos
Cardiotoxicidade/etiologia , Miocárdio/patologia , Pneumonia Pneumocócica/complicações , Streptococcus pneumoniae/patogenicidade , Animais , Antibacterianos/uso terapêutico , Western Blotting , Cardiotoxicidade/sangue , Modelos Animais de Doenças , Ecocardiografia , Eletrocardiografia , Proteínas de Ligação a Ácido Graxo/sangue , Feminino , Coração/microbiologia , Masculino , Papio , Pneumonia Pneumocócica/sangue , Pneumonia Pneumocócica/tratamento farmacológico , Troponina T/sangue
18.
Infect Immun ; 85(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28438972

RESUMO

Streptococcus pneumoniae (pneumococcus) produces many capsule types that differ in their abilities to evade host immune recognition. To explain these serotype-dependent protective capacities, many studies have investigated capsular thickness or the interaction of the capsule with complement proteins, but the effects of small chemical modifications of the capsule on its function have not been studied. One small chemical modification found frequently among pneumococcal capsules is O-acetylation. Pneumococcal serotype 33A has two membrane-bound O-acetyltransferase genes, wciG and wcjE A 33A wcjE-deficient variant, 33F, occurs naturally and is increasing in prevalence in the wake of widespread conjugate vaccine use, but no wciG-deficient variants have been reported. To study the biological consequence of the loss of O-acetylation, we created wciG-deficient variants in both serotypes 33A and 33F, which we named 33X1 (ΔwciG) and 33X2 (ΔwciG ΔwcjE). Serotypes 33X1 and 33X2 express novel capsule types based on serological and biochemical analyses. We found that loss of WcjE-mediated O-acetylation appears not to affect cell wall shielding, since serotypes 33A and 33F exhibit comparable nonspecific opsonophagocytic killing, biofilm production, and adhesion to nasopharyngeal cells, though serotype 33F survived short-term drying better than serotype 33A. Loss of WciG-mediated O-acetylation in serotypes 33X1 and 33X2, however, resulted in a phenotype resembling that of nonencapsulated strains: increased cell wall accessibility, increased nonspecific opsonophagocytic killing, enhanced biofilm formation, and increased adhesion to nasopharyngeal cells. We conclude that WciG-mediated, but not WcjE-mediated, O-acetylation is important for producing protective capsules in 33A and that small chemical changes to the capsule can drastically affect its biological properties.


Assuntos
Acetilação , Atividade Bactericida do Sangue , Antígenos O/química , Polissacarídeos Bacterianos/química , Sorogrupo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/patogenicidade , Acetiltransferases/genética , Acetiltransferases/metabolismo , Humanos , Viabilidade Microbiana , Mutação , Antígenos O/metabolismo , Proteínas Opsonizantes/metabolismo , Polissacarídeos Bacterianos/metabolismo , Streptococcus pneumoniae/classificação
19.
PLoS Pathog ; 11(12): e1005337, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26659062

RESUMO

Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK)1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT) induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC), and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1ß in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10), which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention.


Assuntos
Toxinas Bacterianas/toxicidade , Macrófagos Alveolares/microbiologia , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/patologia , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Animais , Apoptose/fisiologia , Western Blotting , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Camundongos , Camundongos Knockout , Necrose , Proteínas Quinases/metabolismo , RNA Interferente Pequeno , Espécies Reativas de Oxigênio
20.
Ann Clin Microbiol Antimicrob ; 16(1): 19, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356113

RESUMO

Serratia marcescens is a Gram-negative bacterium with proven resistance to multiple antibiotics and causative of catheter-associated infections. Bacterial colonization of catheters mainly involves the formation of biofilm. The objectives of this study were to explore the susceptibility of S. marcescens biofilms to high doses of common antibiotics and non-antimicrobial agents. Biofilms formed by a clinical isolate of S. marcescens were treated with ceftriaxone, kanamycin, gentamicin, and chloramphenicol at doses corresponding to 10, 100 and 1000 times their planktonic minimum inhibitory concentration. In addition, biofilms were also treated with chemical compounds such as polysorbate-80 and ursolic acid. S. marcescens demonstrated susceptibility to ceftriaxone, kanamycin, gentamicin, and chloramphenicol in its planktonic form, however, only chloramphenicol reduced both biofilm biomass and biofilm viability. Polysorbate-80 and ursolic acid had minimal to no effect on either planktonic and biofilm grown S. marcescens. Our results suggest that supratherapeutic doses of chloramphenicol can be used effectively against established S. marcescens biofilms.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cloranfenicol/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/fisiologia , Biomassa , Humanos , Polissorbatos/farmacologia , Triterpenos/farmacologia , Ácido Ursólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA