Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nature ; 607(7920): 726-731, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859179

RESUMO

Endothermy underpins the ecological dominance of mammals and birds in diverse environmental settings1,2. However, it is unclear when this crucial feature emerged during mammalian evolutionary history, as most of the fossil evidence is ambiguous3-17. Here we show that this key evolutionary transition can be investigated using the morphology of the endolymph-filled semicircular ducts of the inner ear, which monitor head rotations and are essential for motor coordination, navigation and spatial awareness18-22. Increased body temperatures during the ectotherm-endotherm transition of mammal ancestors would decrease endolymph viscosity, negatively affecting semicircular duct biomechanics23,24, while simultaneously increasing behavioural activity25,26 probably required improved performance27. Morphological changes to the membranous ducts and enclosing bony canals would have been necessary to maintain optimal functionality during this transition. To track these morphofunctional changes in 56 extinct synapsid species, we developed the thermo-motility index, a proxy based on bony canal morphology. The results suggest that endothermy evolved abruptly during the Late Triassic period in Mammaliamorpha, correlated with a sharp increase in body temperature (5-9 °C) and an expansion of aerobic and anaerobic capacities. Contrary to previous suggestions3-14, all stem mammaliamorphs were most probably ectotherms. Endothermy, as a crucial physiological characteristic, joins other distinctive mammalian features that arose during this period of climatic instability28.


Assuntos
Evolução Biológica , Orelha Interna , Mamíferos , Termogênese , Animais , Fenômenos Biomecânicos , Temperatura Corporal , Orelha Interna/anatomia & histologia , Orelha Interna/fisiologia , Extinção Biológica , Fósseis , História Antiga , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Ductos Semicirculares/anatomia & histologia , Ductos Semicirculares/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(52): e2309945120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109543

RESUMO

Simultaneously investigating the effects of abiotic and biotic factors on diversity dynamics is essential to understand the evolutionary history of clades. The Grande Coupure corresponds to a major faunal turnover at the Eocene-Oligocene transition (EOT) (~34.1 to 33.55 Mya) and is defined in western Europe as an extinction of insular European mammals coupled with the arrival of crown clades from Asia. Here, we focused on the species-rich group of endemic European artiodactyls to determine the drivers of the Grande Coupure during the major environmental disruptions at the EOT. Using Bayesian birth-death models, we analyzed an original high-resolution fossil dataset (90 species, >2,100 occurrences) from southwestern France (Quercy area) and estimated the regional diversification and diversity dynamics of endemic and immigrant artiodactyls. We show that the endemic artiodactyl radiation was mainly related to the Eocene tropical conditions, combined with biotic controls on speciation and clade-related diversity dependence. We further highlight that the major environmental changes at the transition (77% of species became extinct) and the concurrent increase in seasonality in Europe during the Oligocene were likely the main drivers of their decline. Surprisingly, our results do not support the widely-held hypothesis of active competition between endemic and immigrant artiodactyls but rather suggest a passive or opportunistic replacement by immigrants, which is further supported by morphological clustering of specific ecological traits across the Eocene-Oligocene transition. Our analyses provide insights into the evolutionary and ecological processes driving the diversification and decline of mammalian clades during a major biological and climatic crisis.


Assuntos
Artiodáctilos , Evolução Biológica , Animais , Filogenia , Teorema de Bayes , Europa (Continente) , Fósseis , Mamíferos
4.
Brain Behav Evol ; 98(2): 107-120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36574756

RESUMO

Endocranial casts are capable of capturing the general brain form in extinct mammals due to the high fidelity of the endocranial cavity and the brain in this clade. Camelids, the clade including extant camels, llamas, and alpacas, today display high levels of gyrification and brain complexity. The evolutionary history of the camelid brain has been described as involving unique neocortical growth dynamics which may have led to its current state. However, these inferences are based on their fossil endocast record from approximately ∼40 Mya (Eocene) to ∼11 Mya (Miocene), with a gap in this record for the last ∼10 million years. Here, we present the first descriptions of two camelid endocrania that document the recent history of the camelid brain: a new specimen of Palaeolama sp. from ∼1.2 Mya, and the plaster endocast of Camelops hesternus, a giant camelid from ∼44 to 11 Kya which possessed the largest brain (∼990 g) of all known camelids. We find that neocortical complexity evolved significantly between the Miocene and Pleistocene Epochs. Already ∼1.2 Mya the camelid brain presented morphologies previously known only in extant taxa, especially in the frontal and parietal regions, which may also be phylogenetic informative. The new fossil data indicate that during the Pleistocene, camelid brain dynamics experienced neocortical invagination into the sagittal sinus rather than evagination out of it, as observed in Eocene to Miocene taxa.


Assuntos
Evolução Biológica , Encéfalo , Animais , Filogenia , Fósseis , Mamíferos
5.
J Exp Zool B Mol Dev Evol ; 338(8): 552-560, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35226406

RESUMO

Domestication has led to many changes in domestic animal biology, including their anatomy. The shape of the inner ear, part of the mammalian ear, has been found particularly relevant for discriminating domesticated species, their hybrids or differentiating the wild and domestic populations of a single species. Here we assessed the use of the size and shape of the semicircular canals (SCC) of the inner ear as a marker of pig domestication. We studied a total of 63 petrosal bones belonging to wild boar (Sus scrofa, two populations) and domestic pigs (extensively and intensively reared specimens) that were µCT-scanned and from which the size and the shape of the inner ear were quantified through geometric morphometrics, analyzing the 3D coordinates of 6 landmarks and 60 sliding semilandmarks localized on the SCC and the common crus. The domestic pigs have larger SCC than the wild boar from which they also strongly differ in shape (correct cross validation of 95.5%, confidence interval: 92.3%-98.1%). Strong shape differences were detected between the two populations of wild boar, as well as a sexual size dimorphism. All together the results highlight the taxonomic discriminant power of the SCC of the inner ear shape, and its relevance for domestication studies.


Assuntos
Domesticação , Canais Semicirculares , Animais , Suínos , Sus scrofa
6.
Proc Biol Sci ; 288(1960): 20211439, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34641726

RESUMO

Africa has played a pivotal role in the evolution of early proboscideans (elephants and their extinct relatives), yet vast temporal and geographical zones remain uncharted on the continent. A long hiatus encompassing most of the Eocene (Ypresian to the Early Priabonian, around 13 Myr timespan) considerably hampers our understanding of the early evolutionary history of the group. It is notably the case with the origin of its most successful members, the Elephantiformes, i.e. all elephant-like proboscideans most closely related to modern elephants. Here, we describe a proboscidean lower molar discovered in Lutetian phosphate deposits from Togo, and name a new genus and species, Dagbatitherium tassyi. We show that Dagbatitherium displays several elephantiform dental characteristics such as a three-layered Schmelzmuster, the presence of a mesoconid, transversely enlarged buccal cusps and the individualization of a third lophid closely appressed to a minute distal cingulid. Dagbatitherium represents a stem Elephantiformes, pushing back the origin of the group by about 10 Myr, i.e. a third of its currently known evolutionary history. More importantly, Dagbatitherium potentially unlocks the puzzle of the origin of the unique elephantiform tooth crown organization by bridging a critical temporal and morphological gap between early bunodont incipiently bilophodont proboscidean taxa and more derived elephantiforms.


Assuntos
Fósseis , Dente , Evolução Biológica , Filogenia , Togo
7.
J Anat ; 237(2): 250-262, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32255213

RESUMO

This work describes an unparalleled sample of isolated fossil auditory ossicles of cainotheriid artiodactyls from the Paleogene karstic infillings of Dams (Tarn-et-Garonne, Quercy, France). This collection comprises a total of 18 mallei, 28 incudes and three stapedes. It allows the documentation of both intra- and interspecific variability of ossicular morphology within Cainotheriidae. We show that despite considerable intraspecific variability, the malleus, the incus and the stapes appear to be taxonomically informative at the Cainotheriidae scale. This work further provides the first description of a reconstructed ossicular chain of a terrestrial Paleogene artiodactyl species, found in a basicranium of the late Oligocene cainotheriine Caenomeryx filholi (Pech Desse locality).


Assuntos
Artiodáctilos/anatomia & histologia , Ossículos da Orelha/anatomia & histologia , Animais , Fósseis
8.
Proc Biol Sci ; 286(1912): 20191417, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31575370

RESUMO

Modifications of the morphology and acoustic properties of the ossicular chain are among the major changes that accompanied the adaptation of Cetacea to the aquatic environment. Thus, data on the middle ear ossicles of early whales are crucial clues to understand the first steps of the emblematic terrestrial/aquatic transition that occurred in that group. Yet, the delicate nature and very small size of these bones make their preservation in the fossil record extremely rare. Due to the scarcity of available data, major questions remain concerning the sound transmission pathways in early non-fully aquatic whales. Virtual reconstruction of a partially complete ossicular chain of an Eocene protocetid whale documents for the first time the three ossicles of a semi-aquatic archaeocete. Contrary to previous hypotheses, these ossicles present different evolutionary patterns, showing that the ossicular chain does not act as a single morphological module. Functional analyses of the different middle ear units highlight a mosaic pattern of terrestrial and aquatic signatures. This integrative anatomical and functional study brings strong evidence that protocetids were adapted to their dual acoustic environment with efficient hearing in both air and water.


Assuntos
Evolução Biológica , Cetáceos , Ossículos da Orelha , Fósseis , Animais , Baleias
9.
Proc Biol Sci ; 286(1896): 20182417, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30963938

RESUMO

Studying ontogeny in both extant and extinct species can unravel the mechanisms underlying mammal diversification and specialization. Among mammalian clades, Cetartiodactyla encompass species with a wide range of adaptations, and ontogenetic evidence could clarify longstanding debates on the origins of modern specialized families. Here, we study the evolution of dental eruption patterns in early diverging cetartiodactyls to assess the ecological and biological significance of this character and shed new light on phylogenetic issues. After investigation of the ontogenetic dental series of 63 extinct genera, our parsimony reconstructions of eruption state evolution suggest that the eruption of molars before permanent premolars represents a plesiomorphic condition within Cetartiodactyla. This result substantially differs from a previous study based on modern species only. As a result, the presence of this pattern in most ruminants might represent an ancestral condition contributing to their specialized herbivory, rather than an original adaptation. In contrast, the late eruption of molars in hippopotamoids is more likely related to biological aspects, such as increases in body mass and slower pace of life. Our study mainly shows that eruption sequences reliably characterize higher level cetartiodactyl taxa and could represent a new source of phylogenetic characters, especially to disentangle the origin of hippopotamoids and cetaceans.


Assuntos
Artiodáctilos/anatomia & histologia , Evolução Biológica , Cetáceos/anatomia & histologia , Fósseis/anatomia & histologia , Erupção Dentária , Animais , Artiodáctilos/fisiologia , Cetáceos/fisiologia , Filogenia , Especificidade da Espécie
10.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404779

RESUMO

Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.


Assuntos
Curadoria de Dados/normas , Conjuntos de Dados como Assunto , Disciplinas das Ciências Biológicas/estatística & dados numéricos , Reprodutibilidade dos Testes , Pesquisa/normas
11.
Am J Phys Anthropol ; 159(1): 5-16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26390191

RESUMO

OBJECTIVES: Innovations in brain structure and increase in brain size relative to body mass are key features of Primates evolutionary history. Surprisingly, the endocranial morphology of early Euprimates is still rather poorly known, and our understanding of early euprimate brain evolution (Eocene epoch) relies on a handful of specimens. MATERIALS AND METHODS: In this article, we describe the endocranial cast of the tarsiiform Microchoerus erinaceus from the late Early Eocene of Perrière (Quercy fissure filling, France) based on a virtual reconstruction extracted from CT scan data of the endocranial cavity of the complete, undeformed specimen UM-PRR1771. RESULTS: The endocast of M. erinaceus shows the derived features observed in other Euprimates (e.g. sylvian fissure and temporal lobe), with limited neocortical folding, and a telencephalic flexure comparable to that of extant primates. DISCUSSION: Comparison with the endocasts of other available late Eocene primates shows that they already exhibited a variety of brain morphologies, highlighting the complex history of the external features of the primate brain, as early as the Eocene. M. erinaceus was a fruit and gum eater considered as nocturnal based on its orbit size. However, its brain showed small olfactory bulbs--smaller than in the coeval diurnal taxa Adapis parisiensis--and a neocorticalization similar to folivorous taxa. These observations contrast with patterns observed in primates today where nocturnal taxa have larger olfactory bulbs than diurnal taxa, and call into question a direct correlation between frugivory and neocorticalization increase in primates.


Assuntos
Encéfalo/anatomia & histologia , Fósseis , Crânio/anatomia & histologia , Tarsii/anatomia & histologia , Animais , Antropologia Física , Evolução Biológica , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X
12.
Proc Biol Sci ; 281(1781): 20132792, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24573845

RESUMO

Expansion of the brain is a key feature of primate evolution. The fossil record, although incomplete, allows a partial reconstruction of changes in primate brain size and morphology through time. Palaeogene plesiadapoids, closest relatives of Euprimates (or crown-group primates), are crucial for understanding early evolution of the primate brain. However, brain morphology of this group remains poorly documented, and major questions remain regarding the initial phase of euprimate brain evolution. Micro-CT investigation of the endocranial morphology of Plesiadapis tricuspidens from the Late Palaeocene of Europe--the most complete plesiadapoid cranium known--shows that plesiadapoids retained a very small and simple brain. Plesiadapis has midbrain exposure, and minimal encephalization and neocorticalization, making it comparable with that of stem rodents and lagomorphs. However, Plesiadapis shares a domed neocortex and downwardly shifted olfactory-bulb axis with Euprimates. If accepted phylogenetic relationships are correct, then this implies that the euprimate brain underwent drastic reorganization during the Palaeocene, and some changes in brain structure preceded brain size increase and neocortex expansion during evolution of the primate brain.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Fósseis , Primatas/anatomia & histologia , Crânio/anatomia & histologia , Animais , Europa (Continente) , Microtomografia por Raio-X
13.
Proc Natl Acad Sci U S A ; 107(26): 11871-6, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20547829

RESUMO

The affinities of the Hippopotamidae are at the core of the phylogeny of Cetartiodactyla (even-toed mammals: cetaceans, ruminants, camels, suoids, and hippos). Molecular phylogenies support Cetacea as sister group of the Hippopotamidae, implying a long ghost lineage between the earliest cetaceans (approximately 53 Ma) and the earliest hippopotamids (approximately 16 Ma). Morphological studies have proposed two different sister taxa for hippopotamids: suoids (notably palaeochoerids) or anthracotheriids. Evaluating these phylogenetic hypotheses requires substantiating the poorly known early history of the Hippopotamidae. Here, we undertake an original morphological phylogenetic analysis including several "suiform" families and previously unexamined early Miocene taxa to test previous conflicting hypotheses. According to our results, Morotochoerus ugandensis and Kulutherium rusingensis, until now regarded as the sole African palaeochoerid and the sole African bunodont anthracotheriid, respectively, are unambiguously included within the Hippopotamidae. They are the earliest known hippopotamids and set the family fossil record back to the early Miocene (approximately 21 Ma). The analysis reveals that hippopotamids displayed an unsuspected taxonomic and body size diversity and remained restricted to Africa during most of their history, until the latest Miocene. Our results also confirm the deep nesting of Hippopotamidae within the paraphyletic Anthracotheriidae; this finding allows us to reconstruct the sequence of dental innovations that links advanced selenodont anthracotheriids to hippopotamids, previously a source of major disagreements on hippopotamid origins. The analysis demonstrates a close relationship between Eocene choeropotamids and anthracotheriids, a relationship that potentially fills the evolutionary gap between earliest hippopotamids and cetaceans implied by molecular analyses.


Assuntos
Artiodáctilos/classificação , Artiodáctilos/genética , Evolução Biológica , África , Animais , Artiodáctilos/anatomia & histologia , Fósseis , História Antiga , Modelos Biológicos , Filogenia , Dente/anatomia & histologia
14.
Anat Rec (Hoboken) ; 306(11): 2791-2829, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37018745

RESUMO

Bats form a diverse group of mammals that are highly specialized in active flight and ultrasound echolocation. These specializations rely on adaptations that reflect on their morphoanatomy and have been tentatively linked to brain morphology and volumetry. Despite their small size and fragility, bat crania and natural braincase casts ("endocasts") have been preserved in the fossil record, which allows for investigating brain evolution and inferring paleobiology. Advances in imaging techniques have allowed virtual extraction of internal structures, assuming that the shape of the endocast reflects soft organ morphology. However, there is no direct correspondence between the endocast and internal structures because meninges and vascular tissues mark the inner braincase together with the brain they surround, resulting in a mosaic morphology of the endocast. The hypothesis suggesting that the endocast reflects the brain in terms of both external shape and volume has drastic implications when addressing brain evolution, but it has been rarely discussed. To date, only a single study addressed the correspondence between the brain and braincase in bats. Taking advantage of the advent of imaging techniques, we reviewed the anatomical, neuroanatomical, and angiological literature and compare this knowledge available on bat's braincase anatomy with anatomical observations using a sample of endocranial casts representing most modern bat families. Such comparison allows to propose a Chiroptera-scale nomenclature for future descriptions and comparisons among bat endocasts. Describing the imprints of the tissues surrounding the brain also allows to address to what extent brain features can be blurred or hidden (e.g., hypophysis, epiphysis, colliculi, flocculus). Furthermore, this approach encourages further study to formally test the proposed hypotheses.


Assuntos
Quirópteros , Humanos , Animais , Evolução Biológica , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Crânio/diagnóstico por imagem , Crânio/anatomia & histologia , Fósseis , Mamíferos/anatomia & histologia
15.
Curr Biol ; 33(21): 4624-4640.e21, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37858341

RESUMO

Bats are among the most recognizable, numerous, and widespread of all mammals. But much of their fossil record is missing, and bat origins remain poorly understood, as do the relationships of early to modern bats. Here, we describe a new early Eocene bat that helps bridge the gap between archaic stem bats and the hyperdiverse modern bat radiation of more than 1,460 living species. Recovered from ∼50 million-year-old cave sediments in the Quercy Phosphorites of southwestern France, Vielasia sigei's remains include a near-complete, three-dimensionally preserved skull-the oldest uncrushed bat cranium yet found. Phylogenetic analyses of a 2,665 craniodental character matrix, with and without 36.8 kb of DNA sequence data, place Vielasia outside modern bats, with total evidence tip-dating placing it sister to the crown clade. Vielasia retains the archaic dentition and skeletal features typical of early Eocene bats, but its inner ear shows specializations found in modern echolocating bats. These features, which include a petrosal only loosely attached to the basicranium, an expanded cochlea representing ∼25% basicranial width, and a long basilar membrane, collectively suggest that the kind of laryngeal echolocation used by most modern bats predates the crown radiation. At least 23 individuals of V. sigei are preserved together in a limestone cave deposit, indicating that cave roosting behavior had evolved in bats by the end of the early Eocene; this period saw the beginning of significant global climate cooling that may have been an evolutionary driver for bats to first congregate in caves.


Assuntos
Quirópteros , Ecolocação , Animais , Evolução Biológica , Quirópteros/genética , Filogenia , Crânio , Camundongos
16.
Proc Biol Sci ; 279(1732): 1319-26, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21993503

RESUMO

The long-term isolation of South America during most of the Cenozoic produced a highly peculiar terrestrial vertebrate biota, with a wide array of mammal groups, among which caviomorph rodents and platyrrhine primates are Mid-Cenozoic immigrants. In the absence of indisputable pre-Oligocene South American rodents or primates, the mode, timing and biogeography of these extraordinary dispersals remained debated. Here, we describe South America's oldest known rodents, based on a new diverse caviomorph assemblage from the late Middle Eocene (approx. 41 Ma) of Peru, including five small rodents with three stem caviomorphs. Instead of being tied to the Eocene/Oligocene global cooling and drying episode (approx. 34 Ma), as previously considered, the arrival of caviomorphs and their initial radiation in South America probably occurred under much warmer and wetter conditions, around the Mid-Eocene Climatic Optimum. Our phylogenetic results reaffirm the African origin of South American rodents and support a trans-Atlantic dispersal of these mammals during Middle Eocene times. This discovery further extends the gap (approx. 15 Myr) between first appearances of rodents and primates in South America.


Assuntos
Roedores , Migração Animal , Animais , Evolução Biológica , Fósseis , História Antiga , Peru , Filogeografia , Roedores/anatomia & histologia , Roedores/classificação , Dente/anatomia & histologia
17.
Naturwissenschaften ; 96(8): 911-20, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19440682

RESUMO

New dental remains of listriodont suids are described from the lower member of the early to middle Miocene Vihowa Formation of the Bugti Hills, Pakistan. The material is homogeneous in terms of morphology and dimensions and referred as a whole to Listriodon guptai Pilgrim, 1926. This species is also mentioned in coeval deposits of the Zinda Pir Dome, Pakistan, dating back to ca. 19 Ma. The early occurrence of an advanced listriodont in Pakistan constrains the age of acquisition of several characters correlated to lophodonty within Listriodontini, and raises major questions about the early history of the Old World Listriodontinae. Strong morphological similarity between Listriodon guptai and the African species Listriodon akatikubas found in the late early Miocene of Maboko (Kenya, ca. 16.5 Ma) suggests that this latter is most probably a migrant originating from Asia.


Assuntos
Fósseis , Suínos/anatomia & histologia , Dente/anatomia & histologia , Animais , Evolução Biológica , Cefalometria , Meio Ambiente , Geografia , Mamíferos , Paquistão , Paleontologia/métodos , Erupção Dentária
18.
J Morphol ; 278(9): 1168-1184, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28516487

RESUMO

Anoplotheriinae are Paleogene European artiodactyls that present a unique postcranial morphology with a tridactyl autopodium and uncommon limb orientation. This peculiar morphology led to various hypotheses regarding anoplotheriine locomotion from semiaquatic to partly arboreal or partly bipedal. The petrosal bone, housing the organs of balance, and hearing, offers complementary information to postcranial morphology on the ecology of this uncommon artiodactyl. Here, we investigate the middle ear and bony labyrinth of the small anoplotheriine Diplobune minor based on four specimens from the Early Oligocene locality of Itardies (Quercy, France). A macroscopic study coupled with a µCT scan investigation of the petrosal anatomy provides novel information on the bony labyrinth, stapes, and innervation and vasculature of the inner ear of this enigmatic taxon. The petrosal of D. minor exhibits a mosaic of plesiomorphic characters and peculiar features that shed new light into the anatomy of this poorly studied taxon of an obscure taxonomic clade. We can confidently reject that D. minor was a semiaquatic species based on the petrosal morphology: presence of a large mastoid process and nonpachyostotic tegmen tympani do not support underwater hearing. On the other hand, the average semicircular canal radius points to a slow or medium slow agility for D. minor, and fully rejects it was a fast moving animal, which is congruent with its postcranial anatomy.


Assuntos
Artiodáctilos/anatomia & histologia , Orelha Interna/anatomia & histologia , Animais , Limiar Auditivo , Europa (Continente) , Audição , Imageamento Tridimensional , Locomoção , Canais Semicirculares/anatomia & histologia , Crânio/anatomia & histologia
19.
Curr Biol ; 27(12): 1776-1781.e9, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28602653

RESUMO

Mysticeti (baleen whales) and Odontoceti (toothed whales) today greatly differ in their hearing abilities: Mysticeti are presumed to be sensitive to infrasonic noises [1-3], whereas Odontoceti are sensitive to ultrasonic sounds [4-6]. Two competing hypotheses exist regarding the attainment of hearing abilities in modern whales: ancestral low-frequency sensitivity [7-13] or ancestral high-frequency sensitivity [14, 15]. The significance of these evolutionary scenarios is limited by the undersampling of both early-diverging cetaceans (archaeocetes) and terrestrial hoofed relatives of cetaceans (non-cetacean artiodactyls). Here, we document for the first time the bony labyrinth, the hollow cavity housing the hearing organ, of two species of protocetid whales from Lutetian deposits (ca. 46-43 Ma) of Kpogamé, Togo. These archaeocete cetaceans, which are transitional between terrestrial and aquatic forms, prove to be a key for determining the hearing abilities of early whales. We propose a new evolutionary picture for the early stages of this history, based on qualitative and quantitative studies of the cochlear morphology of an unparalleled sample of extant and extinct land artiodactyls and cetaceans. Contrary to the hypothesis that archaeocetes have been more sensitive to high-frequency sounds than their terrestrial ancestors [15], we demonstrate that early cetaceans presented a cochlear functional pattern close to that of their terrestrial relatives, and that specialization for infrasonic or ultrasonic hearing in Mysticeti or Odontoceti, respectively, instead only occurred in fully aquatic whales, after the emergence of Neoceti (Mysticeti+Odontoceti).


Assuntos
Evolução Biológica , Orelha Interna/anatomia & histologia , Fósseis/anatomia & histologia , Audição , Baleias/anatomia & histologia , Animais , Togo , Baleias/fisiologia
20.
PLoS One ; 7(2): e30000, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22347998

RESUMO

We here describe the endocranial cast of the Eocene archaic ungulate Hyopsodus lepidus AMNH 143783 (Bridgerian, North America) reconstructed from X-ray computed microtomography data. This represents the first complete cranial endocast known for Hyopsodontinae. The Hyopsodus endocast is compared to other known "condylarthran" endocasts, i. e. those of Pleuraspidotherium (Pleuraspidotheriidae), Arctocyon (Arctocyonidae), Meniscotherium (Meniscotheriidae), Phenacodus (Phenacodontidae), as well as to basal perissodactyls (Hyracotherium) and artiodactyls (Cebochoerus, Homacodon). Hyopsodus presents one of the highest encephalization quotients of archaic ungulates and shows an "advanced version" of the basal ungulate brain pattern, with a mosaic of archaic characters such as large olfactory bulbs, weak ventral expansion of the neopallium, and absence of neopallium fissuration, as well as more specialized ones such as the relative reduction of the cerebellum compared to cerebrum or the enlargement of the inferior colliculus. As in other archaic ungulates, Hyopsodus midbrain exposure is important, but it exhibits a dorsally protruding largely developed inferior colliculus, a feature unique among "Condylarthra". A potential correlation between the development of the inferior colliculus in Hyopsodus and the use of terrestrial echolocation as observed in extant tenrecs and shrews is discussed. The detailed analysis of the overall morphology of the postcranial skeleton of Hyopsodus indicates a nimble, fast moving animal that likely lived in burrows. This would be compatible with terrestrial echolocation used by the animal to investigate subterranean habitat and/or to minimize predation during nocturnal exploration of the environment.


Assuntos
Ecolocação , Mamíferos/anatomia & histologia , Crânio/anatomia & histologia , Microtomografia por Raio-X/métodos , Animais , Fósseis , Mesencéfalo , América do Norte , Paleontologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA