Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(25): e2303326, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38142300

RESUMO

Injectable hydrogels offer minimally-invasive treatment options for degenerative disc disease, a prevalent condition affecting millions annually. Many hydrogels explored for intervertebral disc (IVD) repair suffer from weak mechanical integrity, migration issues, and expulsion. To overcome these limitations, an injectable and radiopaque hyaluronic acid granular hydrogel is developed. The granular structure provides easy injectability and low extrusion forces, while the radiopacity enables direct visualization during injection into the disc and non-invasive monitoring after injection. The radiopaque granular hydrogel is injected into rabbit disc explants to investigate restoration of healthy disc mechanics following needle puncture injury ex vivo and then delivered in a minimally-invasive manner into the intradiscal space in a clinically-relevant in vivo large animal goat model of IVD degeneration initiated through degradation by chondroitinase. The radiopaque granular hydrogel successfully halted loss of disc height due to degeneration. Further, the hydrogel not only enhanced proteoglycan content and reduced collagen content in the nucleus pulposus (NP) region compared to degenerative discs, but also helped to maintain the structural integrity of the disc and promote healthy segregation of the NP and annulus fibrosus regions. Overall, this study demonstrates the great potential of an injectable radiopaque granular hydrogel for treatment of degenerative disc disease.


Assuntos
Cabras , Ácido Hialurônico , Hidrogéis , Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Coelhos , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/efeitos dos fármacos , Disco Intervertebral/patologia , Disco Intervertebral/diagnóstico por imagem , Meios de Contraste/química , Meios de Contraste/farmacologia , Injeções , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia
2.
JOR Spine ; 6(4): e1287, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156057

RESUMO

Background: Vertebral endplate sclerosis and facet osteoarthritis have been documented in animals and humans. However, it is unclear how these adjacent pathologies engage in crosstalk with the intervertebral disc. This study sought to elucidate this crosstalk by assessing each compartment individually in response to acute disc injury. Methods: Eleven New Zealand White rabbits underwent annular disc puncture using a 16G or 21G needle. At 4 and 10 weeks, individual compartments of the motion segment were analyzed. Discs underwent T 1 relaxation mapping with MRI contrast agent gadodiamide as well T 2 mapping. Both discs and facets underwent mechanical testing via vertebra-disc-vertebra tension-compression creep testing and indentation testing, respectively. Endplate bone density was quantified via µCT. Discs and facets were sectioned and stained for histology scoring. Results: Intervertebral discs became more degenerative with increasing needle diameter and time post-puncture. Bone density also increased in endplates adjacent to both 21G and 16G punctured discs leading to reduced gadodiamide transport at 10 weeks. The facet joints, however, did not follow this same trend. Facets adjacent to 16G punctured discs were less degenerative than facets adjacent to 21G punctured discs at 10 weeks. 16G facets were more degenerative at 4 weeks than at 10, suggesting the cartilage had recovered. The formation of severe disc osteophytes in 16G punctured discs between 4 and 10 weeks likely offloaded the facet cartilage, leading to the recovery observed. Conclusions: Overall, this study supports that degeneration spans the whole spinal motion segment following disc injury. Vertebral endplate thickening occurred in response to disc injury, which limited the diffusion of small molecules into the disc. This work also suggests that altered disc mechanics can induce facet degeneration, and that extreme bony remodeling adjacent to the disc may promote facet cartilage recovery through offloading of the articular cartilage.

3.
Sci Transl Med ; 15(722): eadf1690, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967202

RESUMO

Conventional microdiscectomy treatment for intervertebral disc herniation alleviates pain but does not repair the annulus fibrosus, resulting in a high incidence of recurrent herniation and persistent dysfunction. The lack of repair and the acute inflammation that arise after injury can further compromise the disc and result in disc-wide degeneration in the long term. To address this clinical need, we developed tension-activated repair patches (TARPs) for annulus fibrosus repair and local delivery of the anti-inflammatory factor anakinra (a recombinant interleukin-1 receptor antagonist). TARPs transmit physiologic strain to mechanically activated microcapsules embedded within the patch, which release encapsulated bioactive molecules in direct response to spinal loading. Mechanically activated microcapsules carrying anakinra were loaded into TARPs, and the effects of TARP-mediated annular repair and anakinra delivery were evaluated in a goat model of annular injury in the cervical spine. TARPs integrated with native tissue and provided structural reinforcement at the injury site that prevented aberrant disc-wide remodeling resulting from detensioning of the annular fibrosus. The delivery of anakinra by TARP implantation increased matrix deposition and retention at the injury site and improved maintenance of disc extracellular matrix. Anakinra delivery additionally attenuated the inflammatory response associated with TARP implantation, decreasing osteolysis in adjacent vertebrae and preserving disc cellularity and matrix organization throughout the annulus fibrosus. These results demonstrate the therapeutic potential of TARPs for the treatment of intervertebral disc herniation.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Nanofibras , Animais , Deslocamento do Disco Intervertebral/tratamento farmacológico , Deslocamento do Disco Intervertebral/cirurgia , Cabras , Cápsulas , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Degeneração do Disco Intervertebral/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA