Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 550(7674): 109-113, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28953869

RESUMO

Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Homeostase , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Actinas/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Masculino , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores Pré-Sinápticos/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo
2.
J Neurosci ; 34(16): 5416-30, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24741033

RESUMO

Netrin and its receptor, Frazzled, dictate the strength of synaptic connections in the giant fiber system (GFS) of Drosophila melanogaster by regulating gap junction localization in the presynaptic terminal. In Netrin mutant animals, the synaptic coupling between a giant interneuron and the "jump" motor neuron was weakened and dye coupling between these two neurons was severely compromised or absent. In cases in which Netrin mutants displayed apparently normal synaptic anatomy, half of the specimens exhibited physiologically defective synapses and dye coupling between the giant fiber (GF) and the motor neuron was reduced or eliminated, suggesting that gap junctions were disrupted in the Netrin mutants. When we examined the gap junctions with antibodies to Shaking-B (ShakB) Innexin, they were significantly decreased or absent in the presynaptic terminal of the mutant GF. Frazzled loss of function mutants exhibited similar defects in synaptic transmission, dye coupling, and gap junction localization. These data are the first to show that Netrin and Frazzled regulate the placement of gap junctions presynaptically at a synapse.


Assuntos
Proteínas de Drosophila/metabolismo , Fatores de Crescimento Neural/metabolismo , Junção Neuromuscular/citologia , Terminações Pré-Sinápticas/fisiologia , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Geneticamente Modificados , Dendritos/genética , Dendritos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Potenciais Pós-Sinápticos Excitadores/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Modelos Biológicos , Neurônios Motores/fisiologia , Mutação/genética , Fatores de Crescimento Neural/genética , Rede Nervosa/fisiologia , Receptores de Netrina , Netrina-1 , Junção Neuromuscular/fisiologia , Pupa , Tempo de Reação/genética , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética
3.
Neuron ; 110(22): 3743-3759.e6, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36087584

RESUMO

Presynaptic homeostatic plasticity (PHP) adaptively regulates synaptic transmission in health and disease. Despite identification of numerous genes that are essential for PHP, we lack a dynamic framework to explain how PHP is initiated, potentiated, and limited to achieve precise control of vesicle fusion. Here, utilizing both mice and Drosophila, we demonstrate that PHP progresses through the assembly and physical expansion of presynaptic signaling foci where activated integrins biochemically converge with trans-synaptic Semaphorin2b/PlexinB signaling. Each component of the identified signaling complexes, including alpha/beta-integrin, Semaphorin2b, PlexinB, talin, and focal adhesion kinase (FAK), and their biochemical interactions, are essential for PHP. Complex integrity requires the Sema2b ligand and complex expansion includes a ∼2.5-fold expansion of active-zone associated puncta composed of the actin-binding protein talin. Finally, complex pre-expansion is sufficient to accelerate the rate and extent of PHP. A working model is proposed incorporating signal convergence with dynamic molecular assemblies that instruct PHP.


Assuntos
Proteínas de Drosophila , Animais , Camundongos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Terminações Pré-Sinápticas/metabolismo , Talina/metabolismo , Plasticidade Neuronal/fisiologia , Drosophila/metabolismo
4.
Nat Commun ; 12(1): 513, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479240

RESUMO

Missense mutations in Valosin-Containing Protein (VCP) are linked to diverse degenerative diseases including IBMPFD, amyotrophic lateral sclerosis (ALS), muscular dystrophy and Parkinson's disease. Here, we characterize a VCP-binding co-factor (SVIP) that specifically recruits VCP to lysosomes. SVIP is essential for lysosomal dynamic stability and autophagosomal-lysosomal fusion. SVIP mutations cause muscle wasting and neuromuscular degeneration while muscle-specific SVIP over-expression increases lysosomal abundance and is sufficient to extend lifespan in a context, stress-dependent manner. We also establish multiple links between SVIP and VCP-dependent disease in our Drosophila model system. A biochemical screen identifies a disease-causing VCP mutation that prevents SVIP binding. Conversely, over-expression of an SVIP mutation that prevents VCP binding is deleterious. Finally, we identify a human SVIP mutation and confirm the pathogenicity of this mutation in our Drosophila model. We propose a model for VCP disease based on the differential, co-factor-dependent recruitment of VCP to intracellular organelles.


Assuntos
Longevidade/genética , Lisossomos/metabolismo , Proteínas de Membrana/genética , Mutação , Doenças Neurodegenerativas/genética , Proteínas de Ligação a Fosfato/genética , Proteína com Valosina/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Doenças Neurodegenerativas/metabolismo , Osteíte Deformante/genética , Osteíte Deformante/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Ligação Proteica , Proteína com Valosina/metabolismo
5.
Neuron ; 107(1): 95-111.e6, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32380032

RESUMO

Progressive synapse loss is an inevitable and insidious part of age-related neurodegenerative disease. Typically, synapse loss precedes symptoms of cognitive and motor decline. This suggests the existence of compensatory mechanisms that can temporarily counteract the effects of ongoing neurodegeneration. Here, we demonstrate that presynaptic homeostatic plasticity (PHP) is induced at degenerating neuromuscular junctions, mediated by an evolutionarily conserved activity of presynaptic ENaC channels in both Drosophila and mouse. To assess the consequence of eliminating PHP in a mouse model of ALS-like degeneration, we generated a motoneuron-specific deletion of Scnn1a, encoding the ENaC channel alpha subunit. We show that Scnn1a is essential for PHP without adversely affecting baseline neural function or lifespan. However, Scnn1a knockout in a degeneration-causing mutant background accelerated motoneuron loss and disease progression to twice the rate observed in littermate controls with intact PHP. We propose a model of neuroprotective homeostatic plasticity, extending organismal lifespan and health span.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Homeostase/fisiologia , Plasticidade Neuronal/fisiologia , Neuroproteção/fisiologia , Terminações Pré-Sinápticas/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Drosophila melanogaster , Camundongos , Camundongos Knockout , Junção Neuromuscular/metabolismo
6.
Cell Rep ; 20(8): 1855-1866, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28834749

RESUMO

The homeostatic control of presynaptic neurotransmitter release stabilizes information transfer at synaptic connections in the nervous system of organisms ranging from insect to human. Presynaptic homeostatic signaling centers upon the regulated membrane insertion of an amiloride-sensitive degenerin/epithelial sodium (Deg/ENaC) channel. Elucidating the subunit composition of this channel is an essential step toward defining the underlying mechanisms of presynaptic homeostatic plasticity (PHP). Here, we demonstrate that the ppk1 gene encodes an essential subunit of this Deg/ENaC channel, functioning in motoneurons for the rapid induction and maintenance of PHP. We provide genetic and biochemical evidence that PPK1 functions together with PPK11 and PPK16 as a presynaptic, hetero-trimeric Deg/ENaC channel. Finally, we highlight tight control of Deg/ENaC channel expression and activity, showing increased PPK1 protein expression during PHP and evidence for signaling mechanisms that fine tune the level of Deg/ENaC activity during PHP.


Assuntos
Aminobutiratos/metabolismo , Proteínas de Drosophila/metabolismo , Canais Epiteliais de Sódio/metabolismo , Animais , Drosophila melanogaster , Feminino , Homeostase , Masculino , Transdução de Sinais , Canais de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA