Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202402094, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031525

RESUMO

A comprehensive investigation of two new molecular triads incorporating the diketopyrrolopyrrole unit into a quinoidized thienothiophene skeleton, which is further end-capped with dicyanomethylene (DPP-TT-CN) or phenoxyl groups (DPP-TT-PhO), has been carried out. A combination of UV-Vis-NIR and infrared spectroelectrochemical techniques and cryogenic UV-Vis-NIR absorption spectroscopy supported by theoretical calculations has been used. The main result is the formation of similar H-aggregates in the dimerization process of the neutral molecules and of the charged anionic species. The experimental absorption spectra of the aggregated species are accurately reproduced by quantum chemical calculations using the Spano's model, including excitonic coupling for the dimeric forms and full vibronic resolution of the absorption bands. The strong excitonic coupling taking place is key to understand the electronic structure of the dimeric aggregates and has been instrumental to disentangle the type of H-aggregation. This study is of relevance to get a better understanding of the molecular aggregation of organic p-conjugated chromophores and is useful as a guideline for the refinement of the engineering of molecular materials for which supramolecular design is required.

2.
Faraday Discuss ; 250(0): 202-219, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37961853

RESUMO

The exponential effort in the design of hole-transporting materials (HTMs) during the last decade has been motivated by their key role as p-type semiconductors for (opto)electronics. Although structure-property relationships have been successfully rationalized to decipher optimal site substitutions, aliphatic chain lengths or efficient aromatic cores for enhanced charge conduction, the impact of molecular shape, material morphology and dynamic disorder has been generally overlooked. In this work, we characterize by means of a multi-level theoretical approach the charge transport properties of a novel planar small-molecule HTM based on the indoloindole aromatic core (IDIDF), and compare it with spherical spiro-OMeTAD. Hybrid DFT calculations predict moderate band dispersions in IDIDF associated to the main transport direction characterized by π-π stacked molecules, both between the indoloindole cores and the thiophene groups. Strongly coupled dimers show relevant non-covalent interactions (NCI), indicating that NCI surfaces are a necessary but not exclusive requirement for large electronic couplings. We evidence remarkable differences in the site energy standard deviation and electronic coupling distributions between the conduction paths of IDIDF and spiro-OMeTAD. Despite the spherical vs. planar shape, theoretical calculations predict in the static crystal strong direction-dependent charge transport in the two HTMs, with ca. one-order-of-magnitude higher mobility (µ) for IDIDF. The dynamical disorder promoted by finite temperature effects in the crystal leads to a reduction in the hole transport properties in both HTMs, with maximum µ values of 2.42 and 4.2 × 10-2 cm2 V-1 s-1 for IDIDF and spiro-OMeTAD, respectively, as well as a significant increase in the transport anisotropy in the latter. Finally, the impact of the material amorphousness in the hole mobility is analysed by modelling a fully random distribution of HTM molecules. An average (lower-bound) mobility of 1.1 × 10-3 and 4.9 × 10-5 cm2 V-1 s-1 is predicted for planar IDIDF and spherical spiro-OMeTAD, respectively, in good accord with the experimental data registered in thin-film devices. Our results demonstrate the strong influence of molecular shape, dynamic structural fluctuations and crystal morphology on the charge transport, and pose indoloindole-based HTMs as promising materials for organic electronics and photovoltaics.

3.
Inorg Chem ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186732

RESUMO

The theoretical calculation of the temperature-dependent nonradiative decay rate constant is fundamental for predicting the usefulness of transition-metal complexes for technological applications. Such a computation implies the determination of the barriers separating the emitting triplet state from metal-centered states, which are key mediators of this type of radiationless relaxation. We here do so for the two green-emitting cyclometalated Ir(III) complexes, [Ir(ppy)2(pyim)]+ and [Ir(diFppy)2(dtb-bpy)]+, of general formula [Ir(C∧N)2(N∧N)]+, performing DFT calculations with both B3LYP and PBE0 functionals. On the basis of the obtained results and the comparison with the experimental nonradiative decay rate constants, we conclude that B3LYP provides too low energy barriers to the metal-centered states, while the PBE0 provides reasonable values. We consequently recommend to avoid the use of the commonly employed B3LYP functional for the evaluation of such an energy barrier for cyclometalated Ir(III) complexes.

4.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38953447

RESUMO

Herein, we explore, from a theoretical perspective, the nonradiative photoinduced processes (charge separation and energy transfer) within a family of donor-acceptor supramolecular complexes based on the electron-donor truxene-tetrathiafulvalene (truxTTF) derivative and a series of curved fullerene fragments (buckybowls) of different shapes and sizes (C30H12, C32H12, and C38H14) as electron acceptors that successfully combine with truxTTF via non-covalent interactions. The resulting supramolecular complexes (truxTTF·C30H12, truxTTF·C32H12, and truxTTF·C38H14) undergo charge-separation processes upon photoexcitation through charge-transfer states involving the donor and acceptor units. Despite the not so different size of the buckybowls, they present noticeable differences in the charge-separation efficiency owing to a complex decay post-photoexcitation mechanism involving several low-lying excited states of different natures (local and charge-transfer excitations), all closely spaced in energy. In this intricate scenario, we have adopted a theoretical approach combining electronic structure calculations at (time-dependent) density functional theory, a multistate multifragment diabatization method, the Marcus-Levitch-Jortner semiclassical rate expression, and a kinetic model to estimate the charge separation rate constants of the supramolecular heterodimers. Our outcomes highlight that the efficiency of the photoinduced charge-separation process increases with the extension of the buckybowl backbone. The supramolecular heterodimer with the largest buckybowl (truxTTF·C38H14) displays multiple and efficient electron-transfer pathways, providing a global photoinduced charge separation in the ultrafast time scale in line with the experimental findings. The study reported indicates that modifications in the shape and size of buckybowl systems can give rise to attractive novel acceptors for potential photovoltaic applications.

5.
Sensors (Basel) ; 24(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257502

RESUMO

A Global Navigation Satellite System (GNSS) is widely used today for both positioning and timing purposes. Many distinct receiver chips are available as Application-Specific Integrated Circuit (ASIC)s off-the-shelf, each tailored to the requirements of various applications. These chips deliver good performance and low energy consumption but offer customers little-to-no transparency about their internal features. This prevents modification, research in GNSS processing chain enhancement (e.g., application of Approximate Computing (AxC) techniques), and design space exploration to find the optimal receiver for a use case. In this paper, we review the GNSS processing chain using SyDR, our open-source GNSS Software-Defined Radio (SDR) designed for algorithm benchmarking, and highlight the limitations of a software-only environment. In return, we propose an evolution to our system, called Hard SyDR to become closer to the hardware layer and access new Key Performance Indicator (KPI)s, such as power/energy consumption and resource utilization. We use High-Level Synthesis (HLS) and the PYNQ platform to ease our development process and provide an overview of their advantages/limitations in our project. Finally, we evaluate the foreseen developments, including how this work can serve as the foundation for an exploration of AxC techniques in future low-power GNSS receivers.

6.
Angew Chem Int Ed Engl ; : e202404014, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934233

RESUMO

We show an unexpected aggregation phenomenon of a long oligoyne (Py[16]) with 16 contiguous triple bonds and endcapped with bulky 3,5-bi(3,5-bis-tert-butylphenyl)pyridine groups. Aggregation of 1D π-conjugated oligoyne chains is rare given the minimal π-π intermolecular interactions as well as its flexibility that works against self-assembly. In dilute solutions, the reversible aggregation of Py[16] initiates at low temperature in the range of 140-180 K, and is not observed for shorter oligoynes in this series. Cryogenic UV/Vis electronic absorption spectra and vibrational Raman spectra with different laser wavelength lines tuning from in-resonance to off-resonance conditions have been used to extract the vibrational features characterizing the monomer and aggregate species. Theoretical calculations complement the spectroscopic findings.

7.
Angew Chem Int Ed Engl ; : e202412981, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141766

RESUMO

7-Azaindole has been integrated as building block with complementary N-H···N hydrogen bonding sites for the synthesis of a tetrahedral molecular tecton, namely tetra(α-carbolin-6-yl)methane, TACM. The self-assembly of this molecule results in a 3D hydrogen-bonded organic framework (HOF). This supramolecular structure constitutes a crystalline microporous material with an extraordinary thermal and chemical robustness. Single crystal X-ray diffraction reveals how the five-fold catenation of diamonoid systems, stabilized by hydrogen bonds and π-π interactions, form an interpenetrated network with monodimensional channels. The structural features of the crystalline material are also observed by transmission electron microscopy (TEM). Additionally, the microporosity of the activated TACM-HOF is characterized by gas sorption (N2, CO2, CH4 and H2) experiments performed at different pressures. A selective adsorption is observed for CO2 uptake and TACM-HOF also presents a good adsorption capacity for H2 among supramolecular organic frameworks.

8.
J Am Chem Soc ; 145(35): 19243-19255, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37585687

RESUMO

Polyethylene terephthalate (PET) is the most abundant polyester plastic, widely used in textiles and packaging, but, unfortunately, it is also one of the most discarded plastics after one use. In the last years, the enzymatic biodegradation of PET has sparked great interest owing to the discovery and subsequent mutation of PETase-like enzymes, able to depolymerize PET. FAST-PETase is one of the best enzymes hitherto proposed to efficiently degrade PET, although the origin of its efficiency is not completely clear. To understand the molecular origin of its enhanced catalytic activity, we have carried out a thorough computational study of PET degradation by the FAST-PETase action by employing classical and hybrid (QM/MM) molecular dynamics (MD) simulations. Our findings show that the rate-limiting reaction step for FAST-PETase corresponds to the acylation stage with an estimated free energy barrier of 12.1 kcal mol-1, which is significantly smaller than that calculated for PETase (16.5 kcal mol-1) and, therefore, supports the enhanced catalytic activity of FAST-PETase. The origin of this enhancement is mainly attributed to the N233K mutation, which, although sited relatively far from the active site, induces a chain folding where the Asp206 of the catalytic triad is located, impeding that this residue sets effective H-bonds with its neighboring residues. This effect makes Asp206 hold a more basic character compared to the wild-type PETase and boosts the interaction with the protonated His237 of the catalytic triad in the transition state of acylation, with the consequent decrease of the catalytic barrier and acceleration of the PET degradation reaction.

9.
J Am Chem Soc ; 145(42): 23249-23256, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37813379

RESUMO

Bond breaking has emerged as a new tool to postsynthetically modify the pore structure in metal-organic frameworks since it allows us to obtain pore environments in structures that are inaccessible by other techniques. Here, we extend the concept of clip-off chemistry to archetypical ZIF-8, taking advantage of the different stabilities of the bonds between imidazolate and Zn and Fe metal atoms in heterometallic Fe-Zn-ZIF-8. We demonstrate that Fe centers can be removed selectively without affecting the backbone of the structure that is supported by the Zn atoms. This allows us to create mesopores within the highly stable ZIF-8 structure. The strategy presented, combined with control of the amount of iron centers incorporated into the structure, permits porosity engineering of ZIF materials and opens a new avenue for designing novel hierarchical porous frameworks.

10.
Inorg Chem ; 62(20): 7834-7842, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37156094

RESUMO

The incorporation of electroactive organic building blocks into coordination polymers (CPs) and metal-organic frameworks (MOFs) offers a promising approach for adding electronic functionalities such as redox activity, electrical conductivity, and luminescence to these materials. The incorporation of perylene moieties into CPs is, in particular, of great interest due to its potential to introduce both luminescence and redox properties. Herein, we present an innovative synthesis method for producing a family of highly crystalline and stable coordination polymers based on perylene-3,4,9,10-tetracarboxylate (PTC) and various transition metals (TMs = Co, Ni, and Zn) with an isostructural framework. The crystal structure of the PTC-TM CPs, obtained through powder X-ray diffraction and Rietveld refinement, provides valuable insights into the composition and organization of the building blocks within the CP. The perylene moieties are arranged in a herringbone pattern, with short distances between adjacent ligands, which contributes to the dense and highly organized framework of the material. The photophysical properties of PTC-Zn were thoroughly studied, revealing the presence of J-aggregation-based and monomer-like emission bands. These bands were experimentally identified, and their behavior was further understood through the use of quantum-chemical calculations. Solid-state cyclic voltammetry experiments on PTC-TMs showed that the perylene redox properties are maintained within the CP framework. This study presents a simple and effective approach for synthesizing highly stable and crystalline perylene-based CPs with tunable optical and electrochemical properties in the solid state.

11.
J Am Chem Soc ; 144(20): 9074-9082, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575688

RESUMO

Herein, we report on the use of tetrathiavulvalene-tetrabenzoic acid, H4TTFTB, to engender semiconductivity in porous hydrogen-bonded organic frameworks (HOFs). By tuning the synthetic conditions, three different polymorphs have been obtained, denoted MUV-20a, MUV-20b, and MUV-21, all of them presenting open structures (22, 15, and 27%, respectively) and suitable TTF stacking for efficient orbital overlap. Whereas MUV-21 collapses during the activation process, MUV-20a and MUV-20b offer high stability evacuation, with a CO2 sorption capacity of 1.91 and 1.71 mmol g-1, respectively, at 10 °C and 6 bar. Interestingly, both MUV-20a and MUV-20b present a zwitterionic character with a positively charged TTF core and a negatively charged carboxylate group. First-principles calculations predict the emergence of remarkable charge transport by means of a through-space hopping mechanism fostered by an efficient TTF π-π stacking and the spontaneous formation of persistent charge carriers in the form of radical TTF•+ units. Transport measurements confirm the efficient charge transport in zwitterionic MUV-20a and MUV-20b with no need for postsynthetic treatment (e.g., electrochemical oxidation or doping), demonstrating the semiconductor nature of these HOFs with record experimental conductivities of 6.07 × 10-7 (MUV-20a) and 1.35 × 10-6 S cm-1 (MUV-20b).

12.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808413

RESUMO

Precision spraying relies on the response of the spraying equipment to the features of the targeted canopy. PWM technology manages the flow rate using a set of electronically actuated solenoid valves to regulate flow rate at the nozzle level. Previous studies have found that PWM systems may deliver incorrect flow rates. The objective of the present study was to characterize the performance of a commercial blast sprayer modified with pulse-width-modulated nozzles under laboratory conditions, as a preliminary step before its further field validation. Four different duty cycles (25 percent, 50 percent, 75 percent and 100 percent) and four different pressures (400 kPa, 500 kPa, 600 kPa and 700 kPa) were combined to experimentally measure the flow rate of each nozzle. Results showed that the PWM nozzles mounted in the commercial blast sprayer, under static conditions, were capable of modulating flow rate according to the duty cycle. However, the reduction of flow rates for the tested duty cycles according to pressure was lower than the percentage expected. A good linear relation was found between the pressure registered by the control system feedback sensor and the pressure measured by a reference conventional manometer located after the pump. High-speed video recordings confirmed the accurate opening and closing of the nozzles according to the duty cycle; however, substantial pressure variations were found at nozzle level. Further research to establish the general suitability of PWM systems for regulating nozzle flow rates in blast sprayers without modifying the system pressure still remains to be addressed.

13.
Angew Chem Int Ed Engl ; 61(47): e202213345, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36178740

RESUMO

Hydrogen-bonded squaramide (SQ) supramolecular polymers exhibit uncommon thermoreversible polymorph transitions between particle- and fiber-like nanostructures. SQs 1-3, with different steric bulk, self-assemble in solution into particles (AggI) upon cooling to 298 K, and SQs 1 and 2, with only one dendronic group, show a reversible transformation into fibers (AggII) by further decreasing the temperature to 288 K. Nano-DSC and UV/Vis studies on SQ 1 reveal a concentration-dependent transition temperature and ΔH for the AggI-to-AggII conversion, while the kinetic studies on SQ 2 indicate the on-pathway nature of the polymorph transition. Spectroscopic and theoretical studies reveal that these transitions are triggered by the molecular reorganization of the SQ units changing from slipped to head-to-tail hydrogen bonding patterns. This work unveils the thermodynamic and kinetic aspects of reversible polymorph transitions that are of interest to develop stimuli-responsive systems.


Assuntos
Hidrogênio , Polímeros , Ligação de Hidrogênio , Polímeros/química , Cinética
14.
J Am Chem Soc ; 143(29): 11199-11208, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34260220

RESUMO

Functional materials composed of spontaneously self-assembled electron donor and acceptor entities capable of generating long-lived charge-separated states upon photoillumination are in great demand as they are key in building the next generation of light energy harvesting devices. However, creating such well-defined architectures is challenging due to the intricate molecular design, multistep synthesis, and issues associated in demonstrating long-lived electron transfer. In this study, we have accomplished these tasks and report the synthesis of a new fullerene-bis-Zn-porphyrin e-bisadduct by tether-directed functionalization of C60 via a multistep synthetic protocol. Supramolecular oligomers were subsequently formed involving the two porphyrin-bearing arms embracing a fullerene cage of the vicinal molecule as confirmed by MALDI-TOF spectrometry and variable temperature NMR. In addition, the initially formed worm-like oligomers are shown to evolve to generate donut-like aggregates by AFM monitoring that was also supported by theoretical calculations. The final supramolecular donuts revealed an inner cavity size estimated as 23 nm, close to that observed in photosynthetic antenna systems. Upon systematic spectral, computational, and electrochemical studies, an energy level diagram was established to visualize the thermodynamic feasibility of electron transfer in these donor-acceptor constructs. Subsequently, transient pump-probe spectral studies covering the wide femtosecond-to-millisecond time scale were performed to confirm the formation of long-lived charge-separated states. The lifetime of the final charge-separated state was about 40 µs, thus highlighting the significance of the current approach of building giant self-organized donor-acceptor assemblies for light energy harvesting applications.

15.
J Am Chem Soc ; 143(33): 13281-13291, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378925

RESUMO

The synthesis of two series of N-annulated perylene bisimides (PBIs), compounds 1 and 2, is reported, and their self-assembling features are thoroughly investigated by a complete set of spectroscopic measurements and theoretical calculations. The study corroborates the enormous influence that the distance between the PBI core and the peripheral groups exerts on the chiroptical properties and the supramolecular polymerization mechanism. Compounds 1, with the peripheral groups separated from the central PBI core by two methylenes and an ester group, form J-type supramolecular polymers in a cooperative manner but exhibit negligible chiroptical properties. The lack of clear helicity, due to the staircase arrangement of the self-assembling units in the aggregate, justifies these features. In contrast, attaching the peripheral groups directly to the N-annulated PBI core drastically changes the self-assembling properties of compounds 2, which form H-type aggregates following an isodesmic mechanism. These H-type aggregates show a strong aggregation-caused quenching (ACQ) effect that leads to nonemissive aggregates. Chiral (S)-2 and (R)-2 experience an efficient transfer of asymmetry to afford P- and M-type aggregates, respectively, although no amplification of asymmetry is achieved in majority rules or "sergeants-and-soldiers" experiments. A solvent-controlled stereomutation is observed for chiral (S)-2 and (R)-2, which form helical supramolecular polymers of different handedness depending on the solvent (methylcyclohexane or toluene). The stereomutation is accounted for by considering the two possible conformations of the terminal phenyl groups, eclipsed or staggered, which lead to linear or helical self-assemblies, respectively, with different relative stabilities depending on the solvent.

16.
Small ; 17(7): e2006133, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448095

RESUMO

The rising interest on pathway complexity in supramolecular polymerization has prompted the finding of novel monomer designs able to stabilize kinetically trapped species and generate supramolecular polymorphs. In the present work, the exploitation of the Z/E (geometrical) isomerism of squaramide (SQ) units to produce various self-assembled isoforms and complex supramolecular polymerization pathways in methylcyclohexane/CHCl3 mixtures is reported for the first time. This is achieved by using a new bissquaramidic macrocycle (MSq) that self-assembles into two markedly different thermodynamic aggregates, AggA (discrete cyclic structures) and AggB (fibrillar structures), depending on the solvent composition and concentration. Remarkably, UV-vis, 1 H NMR, and FT-IR experiments together with quantum-chemical calculations indicate that these two distinct aggregates are formed via two different hydrogen bonding patterns (side-to-side in AggA and head-to-tail in AggB) due to different conformations in the SQ units (Z,E in AggA and Z,Z in AggB). The ability of MSq to supramolecularly polymerize into two distinct aggregates is utilized to induce the kinetic-to-thermodynamic transformation from AggA to AggB, which occurs via an on-pathway mechanism. It is believed that this system provides new insights for the design of potential supramolecular polymorphic materials by using squaramide units.


Assuntos
Isomerismo , Ligação de Hidrogênio , Polimerização , Quinina/análogos & derivados , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Inorg Chem ; 60(17): 13222-13232, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34492762

RESUMO

The photophysical behavior of the cyclometalating Ir(III) complexes [Ir(ppy)2(bpy)]+, where Hppy is 2-phenylpyridine and bpy is 2,2'-bipyridine (complex 1), and [Ir(diFppy)2(dtb-bpy)]+, where diFppy is 2-(2,4-difluorophenyl)pyridine and dtb-bpy is 4,4'-di-tert-butyl-2,2'-bipyridine (complex 2), has been theoretically investigated by performing density functional theory calculations. The two complexes share the same molecular skeleton, complex 2 being derived from complex 1 through the addition of fluoro and tert-butyl substituents, but present notable differences in their photophysical properties. The remarkable difference in their emission quantum yields (0.196 for complex 1 in dichloromethane and 0.71 for complex 2 in acetonitrile) has been evaluated by characterizing both radiative and nonradiative decay paths. It has emerged that the probability of decaying through the nonradiative triplet metal-centered state, normally associated with the loss of the emission quantum yield, does not appear to be the reason behind the reported substantially different emission efficiency. A more critical factor appears to be the ability of complex 2 to emit from both the usual metal-to-ligand charge-transfer state and from two additional ligand-centered states, as supported by the fact that the respective minima belong to the potential energy surface of the lowest triplet T1 state and that their phosphorescence lifetimes are in the same order of magnitude. In contrast, the emission of complex 1 can be originated only from the metal-to-ligand charge-transfer state, being the only emissive T1 minimum. The results constitute a significant case in which the emission from ligand-centered states is the key for determining the high emission quantum yield of a complex.

18.
J Phys Chem A ; 125(46): 9982-9994, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34767714

RESUMO

The kinetics of the nonradiative photoinduced processes (charge-separation and charge-recombination) experimented in solution by a supramolecular complex formed by an electron-donating bowl-shaped truxene-tetrathiafulvalene (truxTTF) derivative and an electron-accepting fullerene fragment (hemifullerene, C30H12) has been theoretically investigated. The truxTTF·C30H12 heterodimer shows a complex decay mechanism after photoexcitation with the participation of several low-lying excited states of different nature (local and charge-transfer excitations) all close in energy. In this scenario, the absolute rate constants for all of the plausible charge-separation (CS) and charge-recombination (CR) channels have been successfully estimated using the Marcus-Levich-Jortner (MLJ) rate expression, electronic structure calculations, and a multistate diabatization method. The outcomes suggest that for a reasonable estimate of the CS and CR rate constants, it is necessary to include the following: (i) optimally tuned long-range (LC) corrected density functionals, to predict a correct energy ordering of the low-lying excited states; (ii) multistate effects, to account for the electronic couplings; and (iii) environmental solvent effects, to provide a proper stabilization of the charge-transfer excited states and accurate external reorganization energies. The predicted rate constants have been incorporated in a simple but insightful kinetic model that allows estimating global CS and CR rate constants in line with the most generalized three-state model used for the CS and CR processes. The values computed for the global CS and CR rates of the donor-acceptor truxTTF·C30H12 supramolecular complex are found to be in good agreement with the experimental values.

19.
J Am Chem Soc ; 142(50): 21017-21031, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33186011

RESUMO

Columnar polymers and liquid crystals obtained from π-conjugated cone-shaped molecules are receiving increasing interest due to the possibility of obtaining unconventional polar organizations that show anisotropic charge transport and unique chiroptical properties. However, and in contrast to the more common planar discotics, the self-assembly of conic or pyramidic molecules in solution remains largely unexplored. Here, we show how a molecular geometry change, from flat to conic, can generate supramolecular landscapes where different self-assembled species, each of them being under thermodynamic equilibrium with the monomer, exist exclusively within distinct regimes. In particular, depending on the solvent nature-aromatic or aliphatic-cone-shaped C3-symmetric subphthalocyanine 1 can undergo self-assembly either as a tail-to-tail dimer, showing monomer-dimer sigmoidal transitions, or as a head-to-tail noncentrosymmetric columnar polymer, exhibiting a nucleation-elongation polymerization mechanism. Moreover, the experimental and theoretical comparison between racemic and enantiopure samples revealed that the two enantiomers (1M and 1P) tend to narcissistically self-sort in the dimer regime, each enantiomer showing a strong preference to associate with itself, but socially self-sort in the polymer regime, favoring an alternate stacking order along the columns.

20.
J Am Chem Soc ; 142(4): 1895-1903, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31876150

RESUMO

A series of molecular precursors, containing one (1 and 3) or three (2 and 4) pyrene anchors, covalently linked to porphyrins (free base or Zn), were prepared and characterized. All of them enable their π-π stacking onto low-dimensional nanocarbons including single-walled carbon nanotubes (SWCNTs) and nanographene (NG), their individualization, and their characterization. Microscopic (TEM, AFM) and spectroscopic (steady-state UV-vis and fluorescence, spectroelectrochemistry, and transient absorption measurements) techniques were at the forefront of the characterizations and were complemented by Raman spectroscopy and theoretical calculations. Of great importance is the Raman analysis, which corroborated n-doping of the nanocarbons due to the interactions with 1-4 when probed in the solid state. In solution, the situation is, however, quite different. Efficient charge separation was only observed for the graphene-based system NG/3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA