RESUMO
Dysregulation of immune cells and/or altered inflammatory signaling have been implicated with reproductive dysfunction. Physiological changes leading to perturbations in the profile of immune cells and/or pro-inflammatory cytokines in or around female reproductive tissue could potentially have profound effects on ovarian function. Obesity is associated with chronic low-grade inflammation due, in part, to increased immune cell infiltration and inflammation in visceral adipose depots. This study investigated the impact of diet-induced obesity on immune cell infiltration and inflammation in peri-ovarian adipose tissue and mRNA expression of key inflammatory markers and microRNAs (miRs) in ovarian tissue. Six-week-old female C57Bl/6J mice were fed a standard chow or high-fat diet (HFD; 60% kcal fat) for approximately 7 months, at which time peri-ovarian adipose tissue and ovarian tissues were collected. Histological analysis of peri-ovarian adipose tissue from obese mice revealed increased (P < 0.05) adipocyte size and the presence of crown-like structures, the morphological presentation of infiltrating immune cells in adipose tissue, along with increases (P < 0.05) in the mRNA levels of markers of T-cells, activated macrophages, inflammatory cytokines, and chemokines. Ovarian mRNA levels of Il1b, Il6, Tnfa, p55, p75, Ccl2, Ikbkb, and Rela were higher in obese tissue (P < 0.05), with a strong trend (P = 0.06) for an increase in Nos2 and RELA protein. Additionally, ovarian miR125b and miR143 levels were decreased (P = 0.1). These data demonstrate that diet-induced obesity elevates expression of inflammatory-mediator genes in both the ovary and surrounding adipose depot, potentially negatively affecting ovarian function.
Assuntos
Tecido Adiposo/efeitos dos fármacos , Citocinas/metabolismo , Gorduras na Dieta/farmacologia , Expressão Gênica/efeitos dos fármacos , Obesidade/metabolismo , Ovário/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/química , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Tamanho Celular/efeitos dos fármacos , Citocinas/análise , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Feminino , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Ovário/química , Ovário/metabolismoRESUMO
OBJECTIVE: Abnormal lipid metabolism and excess accumulation of lipid in non-adipose tissues are defining characteristics of obesity and its comorbidities. Expression and/or activity of stearoyl-CoA desaturase-1 (SCD1), a major regulator of lipid metabolism, is increased with obesity and the reduction/ablation of this enzyme is associated with an improved metabolic profile. Sterculic oil (SO), obtained from the seeds of the Sterculia feotida tree, contains a high concentration of cyclopropenoic fatty acids which are known inhibitors of SCD1. The purpose of this study was to determine the effects of SO supplementation on the development of obesity and insulin resistance in hyperphagic, obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. DESIGN & METHODS: Rats received either an AIN-93G diet (control) or an AIN-93G diet containing 0.5% SO for 10 weeks. RESULTS: SO did not alter body weight or body composition. Importantly, the desaturase indices, a proxy for the activity of SCD1, were reduced in the liver and adipose tissue of SO supplemented animals. This reduction in SCD1 activity was associated with a reduction in fasting blood glucose concentrations and improved glucose tolerance. In addition, SO reduced intra-abdominal fat mass and adipocyte size and resulted in a â¼3-fold increase in GLUT1 gene expression in intra-abdominal fat. Liver triglyceride content and lipogenic gene expression were reduced by SO. Consistent with an improved metabolic phenotype, SO also improved plasma cholesterol, LDL-cholesterol, and triglyceride concentrations. CONCLUSION: Overall, our data demonstrate an improved metabolic phenotype with SO supplementation and suggest further studies are required to better understand the therapeutic potential of SO.