Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Immunity ; 55(9): 1645-1662.e7, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35882236

RESUMO

Healthy skin maintains a diverse microbiome and a potent immune system to fight off infections. Here, we discovered that the epithelial-cell-derived antimicrobial peptides defensins activated orphan G-protein-coupled receptors (GPCRs) Mrgpra2a/b on neutrophils. This signaling axis was required for effective neutrophil-mediated skin immunity and microbiome homeostasis. We generated mutant mouse lines lacking the entire Defensin (Def) gene cluster in keratinocytes or Mrgpra2a/b. Def and Mrgpra2 mutant animals both exhibited skin dysbiosis, with reduced microbial diversity and expansion of Staphylococcus species. Defensins and Mrgpra2 were critical for combating S. aureus infections and the formation of neutrophil abscesses, a hallmark of antibacterial immunity. Activation of Mrgpra2 by defensin triggered neutrophil release of IL-1ß and CXCL2 which are vital for proper amplification and propagation of the antibacterial immune response. This study demonstrated the importance of epithelial-neutrophil signaling via the defensin-Mrgpra2 axis in maintaining healthy skin ecology and promoting antibacterial host defense.


Assuntos
Infecções Bacterianas , Neutrófilos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Antibacterianos , Proteínas de Transporte , Defensinas/genética , Disbiose , Queratinócitos , Receptores Acoplados a Proteínas G/metabolismo , Staphylococcus aureus
2.
Proc Natl Acad Sci U S A ; 116(22): 10917-10926, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31088972

RESUMO

T cell cytokines contribute to immunity against Staphylococcus aureus, but the predominant T cell subsets involved are unclear. In an S. aureus skin infection mouse model, we found that the IL-17 response was mediated by γδ T cells, which trafficked from lymph nodes to the infected skin to induce neutrophil recruitment, proinflammatory cytokines IL-1α, IL-1ß, and TNF, and host defense peptides. RNA-seq for TRG and TRD sequences in lymph nodes and skin revealed a single clonotypic expansion of the encoded complementarity-determining region 3 amino acid sequence, which could be generated by canonical nucleotide sequences of TRGV5 or TRGV6 and TRDV4 However, only TRGV6 and TRDV4 but not TRGV5 sequences expanded. Finally, Vγ6+ T cells were a predominant γδ T cell subset that produced IL-17A as well as IL-22, TNF, and IFNγ, indicating a broad and substantial role for clonal Vγ6+Vδ4+ T cells in immunity against S. aureus skin infections.


Assuntos
Interleucina-17/fisiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/patogenicidade , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Humanos , Linfonodos/imunologia , Camundongos , Infecções Estafilocócicas/microbiologia
3.
J Cell Mol Med ; 25(21): 10008-10019, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34623736

RESUMO

Fibrosis is a major health burden across diseases and organs. To remedy this, we study wound-induced hair follicle neogenesis (WIHN) as a model of non-fibrotic healing that recapitulates embryogenesis for de novo hair follicle morphogenesis after wounding. We previously demonstrated that TLR3 promotes WIHN through binding wound-associated dsRNA, the source of which is still unclear. Here, we find that multiple distinct contexts of high WIHN all show a strong neutrophil signature. Given the correlation between neutrophil infiltration and endogenous dsRNA release, we hypothesized that neutrophil extracellular traps (NETs) likely release nuclear spliceosomal U1 dsRNA and modulate WIHN. However, rather than enhance regeneration, we find mature neutrophils inhibit WIHN such that mice with mature neutrophil depletion exhibit higher WIHN. Similarly, Pad4 null mice, which are defective in NET production, show augmented WIHN. Finally, using single-cell RNA sequencing, we identify a dramatic increase in mature and activated neutrophils in the wound beds of low regenerating Tlr3-/- mice. Taken together, these results demonstrate that although mature neutrophils are stimulated by a common pro-regenerative cue, their presence and NETs hinder regeneration.


Assuntos
Armadilhas Extracelulares , Neutrófilos/imunologia , Neutrófilos/metabolismo , Regeneração , Animais , Biomarcadores , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Análise de Célula Única/métodos , Pele/metabolismo , Cicatrização/genética , Cicatrização/imunologia
4.
Proc Natl Acad Sci U S A ; 114(26): E5094-E5102, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607050

RESUMO

Infection is a major complication of implantable medical devices, which provide a scaffold for biofilm formation, thereby reducing susceptibility to antibiotics and complicating treatment. Hematogenous implant-related infections following bacteremia are particularly problematic because they can occur at any time in a previously stable implant. Herein, we developed a model of hematogenous infection in which an orthopedic titanium implant was surgically placed in the legs of mice followed 3 wk later by an i.v. exposure to Staphylococcus aureus This procedure resulted in a marked propensity for a hematogenous implant-related infection comprised of septic arthritis, osteomyelitis, and biofilm formation on the implants in the surgical legs compared with sham-operated surgical legs without implant placement and with contralateral nonoperated normal legs. Neutralizing human monoclonal antibodies against α-toxin (AT) and clumping factor A (ClfA), especially in combination, inhibited biofilm formation in vitro and the hematogenous implant-related infection in vivo. Our findings suggest that AT and ClfA are pathogenic factors that could be therapeutically targeted against Saureus hematogenous implant-related infections.


Assuntos
Anticorpos Antibacterianos/farmacologia , Anticorpos Neutralizantes/farmacologia , Artrite Infecciosa , Biofilmes/efeitos dos fármacos , Implantes Experimentais/microbiologia , Osteomielite , Infecções Estafilocócicas , Staphylococcus aureus/fisiologia , Animais , Artrite Infecciosa/tratamento farmacológico , Artrite Infecciosa/etiologia , Artrite Infecciosa/microbiologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Osteomielite/tratamento farmacológico , Osteomielite/etiologia , Osteomielite/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/etiologia , Infecções Estafilocócicas/microbiologia , Titânio
5.
J Allergy Clin Immunol ; 143(4): 1426-1443.e6, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30240702

RESUMO

BACKGROUND: Atopic dermatitis (AD) is associated with epidermal barrier defects, dysbiosis, and skin injury caused by scratching. In particular, the barrier-defective epidermis in patients with AD with loss-of-function filaggrin mutations has increased IL-1α and IL-1ß levels, but the mechanisms by which IL-1α, IL-1ß, or both are induced and whether they contribute to the aberrant skin inflammation in patients with AD is unknown. OBJECTIVE: We sought to determine the mechanisms through which skin injury, dysbiosis, and increased epidermal IL-1α and IL-1ß levels contribute to development of skin inflammation in a mouse model of injury-induced skin inflammation in filaggrin-deficient mice without the matted mutation (ft/ft mice). METHODS: Skin injury of wild-type, ft/ft, and myeloid differentiation primary response gene-88-deficient ft/ft mice was performed, and ensuing skin inflammation was evaluated by using digital photography, histologic analysis, and flow cytometry. IL-1α and IL-1ß protein expression was measured by means of ELISA and visualized by using immunofluorescence and immunoelectron microscopy. Composition of the skin microbiome was determined by using 16S rDNA sequencing. RESULTS: Skin injury of ft/ft mice induced chronic skin inflammation involving dysbiosis-driven intracellular IL-1α release from keratinocytes. IL-1α was necessary and sufficient for skin inflammation in vivo and secreted from keratinocytes by various stimuli in vitro. Topical antibiotics or cohousing of ft/ft mice with unaffected wild-type mice to alter or intermix skin microbiota, respectively, resolved the skin inflammation and restored keratinocyte intracellular IL-1α localization. CONCLUSIONS: Taken together, skin injury, dysbiosis, and filaggrin deficiency triggered keratinocyte intracellular IL-1α release that was sufficient to drive chronic skin inflammation, which has implications for AD pathogenesis and potential therapeutic targets.


Assuntos
Dermatite Atópica/metabolismo , Inflamação/metabolismo , Interleucina-1alfa/metabolismo , Proteínas de Filamentos Intermediários/deficiência , Queratinócitos/metabolismo , Animais , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Disbiose/imunologia , Disbiose/metabolismo , Proteínas Filagrinas , Inflamação/imunologia , Inflamação/microbiologia , Interleucina-1alfa/imunologia , Queratinócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
6.
Artigo em Inglês | MEDLINE | ID: mdl-31138566

RESUMO

Surgical site infections (SSIs) are commonly caused by Staphylococcus aureus We report that a combination of three monoclonal antibodies (MEDI6389) that neutralize S. aureus alpha-toxin, clumping factor A, and four leukocidins (LukSF, LukED, HlgAB, and HlgCB) plus vancomycin had enhanced efficacy compared with control antibody plus vancomycin in two mouse models of S. aureus SSI. Therefore, monoclonal antibody-based neutralization of multiple S. aureus virulence factors may provide an adjunctive perioperative approach to combat S. aureus SSIs.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecção da Ferida Cirúrgica/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Proteínas de Bactérias/imunologia , Anticorpos Amplamente Neutralizantes/farmacologia , Coagulase/imunologia , Leucocidinas/imunologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Infecções Estafilocócicas/microbiologia , Infecção da Ferida Cirúrgica/microbiologia , Vancomicina/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-29311091

RESUMO

Staphylococcus aureus wound infections delay healing and result in invasive complications such as osteomyelitis, especially in the setting of diabetic foot ulcers. In preclinical animal models of S. aureus skin infection, antibody neutralization of alpha-toxin (AT), an S. aureus-secreted pore-forming cytolytic toxin, reduces disease severity by inhibiting skin necrosis and restoring effective host immune responses. However, whether therapeutic neutralization of alpha-toxin is effective against S. aureus-infected wounds is unclear. Herein, the efficacy of prophylactic treatment with a human neutralizing anti-AT monoclonal antibody (MAb) was evaluated in an S. aureus skin wound infection model in nondiabetic and diabetic mice. In both nondiabetic and diabetic mice, anti-AT MAb treatment decreased wound size and bacterial burden and enhanced reepithelialization and wound resolution compared to control MAb treatment. Anti-AT MAb had distinctive effects on the host immune response, including decreased neutrophil and increased monocyte and macrophage infiltrates in nondiabetic mice and decreased neutrophil extracellular traps (NETs) in diabetic mice. Similar therapeutic efficacy was achieved with an active vaccine targeting AT. Taken together, neutralization of AT had a therapeutic effect against S. aureus-infected wounds in both nondiabetic and diabetic mice that was associated with differential effects on the host immune response.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Diabetes Mellitus Experimental/imunologia , Proteínas Hemolisinas/antagonistas & inibidores , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Ferimentos não Penetrantes/tratamento farmacológico , Animais , Carga Bacteriana/efeitos dos fármacos , Toxinas Bacterianas/imunologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/microbiologia , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/microbiologia , Proteínas Hemolisinas/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/complicações , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Vacinas Antiestafilocócicas/farmacologia , Cicatrização/imunologia , Ferimentos não Penetrantes/complicações , Ferimentos não Penetrantes/imunologia , Ferimentos não Penetrantes/microbiologia
8.
Front Immunol ; 15: 1373367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633244

RESUMO

Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) in the U.S. as well as more serious invasive diseases, including bacteremia, sepsis, endocarditis, surgical site infections, osteomyelitis, and pneumonia. These infections are exacerbated by the emergence of antibiotic-resistant clinical isolates such as methicillin-resistant S. aureus (MRSA), highlighting the need for alternatives to antibiotics to treat bacterial infections. We have previously developed a multi-component toxoid vaccine (IBT-V02) in a liquid formulation with efficacy against multiple strains of Staphylococcus aureus prevalent in the industrialized world. However, liquid vaccine formulations are not compatible with the paucity of cold chain storage infrastructure in many low-to-middle income countries (LMICs). Furthermore, whether our IBT-V02 vaccine formulations are protective against S. aureus isolates from LMICs is unknown. To overcome these limitations, we developed lyophilized and spray freeze-dried formulations of IBT-V02 vaccine and demonstrated that both formulations had comparable biophysical attributes as the liquid formulation, including similar levels of toxin neutralizing antibodies and protective efficacy against MRSA infections in murine and rabbit models. To enhance the relevancy of our findings, we then performed a multi-dimensional screen of 83 S. aureus clinical isolates from LMICs (e.g., Democratic Republic of Congo, Palestine, and Cambodia) to rationally down-select strains to test in our in vivo models based on broad expression of IBT-V02 targets (i.e., pore-forming toxins and superantigens). IBT-V02 polyclonal antisera effectively neutralized toxins produced by the S. aureus clinical isolates from LMICs. Notably, the lyophilized IBT-V02 formulation exhibited significant in vivo efficacy in various preclinical infection models against the S. aureus clinical isolates from LMICs, which was comparable to our liquid formulation. Collectively, our findings suggested that lyophilization is an effective alternative to liquid vaccine formulations of our IBT-V02 vaccine against S. aureus infections, which has important implications for protection from S. aureus isolates from LMICs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Camundongos , Coelhos , Staphylococcus aureus , Países em Desenvolvimento , Antibacterianos , Vacinas Bacterianas , Toxoides
9.
Front Immunol ; 13: 893921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655774

RESUMO

Staphylococcus aureus has been acquiring multiple drug resistance and has evolved into superbugs such as Methicillin/Vancomycin-resistant S. aureus (MRSA/VRSA) and, consequently, is a major cause of nosocomial and community infections associated with high morbidity and mortality for which no FDA-approved vaccines or biotherapeutics are available. Previous efforts targeting the surface-associated antigens have failed in clinical testing. Here, we generated hyperimmune products from sera in rabbits against six major S. aureus toxins targeted by an experimental vaccine (IBT-V02) and demonstrated significant efficacy for an anti-virulence passive immunization strategy. Extensive in vitro binding and neutralizing titers were analyzed against six extracellular toxins from individual animal sera. All IBT-V02 immunized animals elicited the maximum immune response upon the first boost dose against all pore-forming vaccine components, while for superantigen (SAgs) components of the vaccine, second and third doses of a boost were needed to reach a plateau in binding and toxin neutralizing titers. Importantly, both anti-staphylococcus hyperimmune products consisting of full-length IgG (IBT-V02-IgG) purified from the pooled sera and de-speciated F(ab')2 (IBT-V02-F(ab')2) retained the binding and neutralizing titers against IBT-V02 target toxins. F(ab')2 also exhibited cross-neutralization titers against three leukotoxins (HlgAB, HlgCB, and LukED) and four SAgs (SEC1, SED, SEK, and SEQ) which were not part of IBT-V02. F(ab')2 also neutralized toxins in bacterial culture supernatant from major clinical strains of S. aureus. In vivo efficacy data generated in bacteremia and pneumonia models using USA300 S. aureus strain demonstrated dose-dependent protection by F(ab')2. These efficacy data confirmed the staphylococcal toxins as viable targets and support the further development effort of hyperimmune products as a potential adjunctive therapy for emergency uses against life-threatening S. aureus infections.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Pneumonia , Animais , Imunoglobulina G/farmacologia , Camundongos , Coelhos , Staphylococcus aureus , Superantígenos
10.
J Orthop Res ; 40(2): 409-419, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33713394

RESUMO

C-C motif chemokine receptor 2 (CCR2) is an important mediator of myeloid cell chemotaxis during inflammation and infection. Myeloid cells such as monocytes, macrophages, and neutrophils contribute to host defense during orthopedic implant-associated infections (OIAI), but whether CCR2-mediated chemotaxis is involved remains unclear. Therefore, a Staphylococcus aureus OIAI model was performed by surgically placing an orthopedic-grade titanium implant and inoculating a bioluminescent S. aureus strain in knee joints of wildtype (wt) and CCR2-deficient mice. In vivo bioluminescent signals significantly increased in CCR2-deficient mice compared with wt mice at later time points (Days 14-28), which was confirmed with ex vivo colony-forming unit enumeration. S. aureus γ-hemolysin utilizes CCR2 to induce host cell lysis. However, there were no differences in bacterial burden when the OIAI model was performed with a parental versus a mutant γ-hemolysin-deficient S. aureus strain, indicating that the protection was mediated by the host cell function of CCR2 rather than γ-hemolysin virulence. Although CCR2-deficient and wt mice had similar cellular infiltrates in the infected joint tissue, CCR2-deficient mice had reduced myeloid cells and γδ T cells in the draining lymph nodes. Taken together, CCR2 contributed to host defense at later time points during an OIAI by increasing immune cell infiltrates in the draining lymph nodes, which likely contained the infection and prevented invasive spread.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Proteínas Hemolisinas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR2 , Receptores de Quimiocinas
11.
J Invest Dermatol ; 142(4): 1126-1135.e4, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34626614

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is important for psoriasis pathogenesis because STAT3 signaling downstream of IL-6, IL-21, IL-22, and IL-23 contributes to T helper type 17 cell development and because transgenic mice with keratinocyte (KC) STAT3 expression (K14-Stat3C mice) develop psoriasis-like dermatitis. In this study, the relative contribution of STAT3 signaling in KCs versus in T cells was evaluated in the imiquimod model of psoriasis-like dermatitis. Mice with STAT3-inducible deletion in KCs (K5-Stat3-/- mice) had decreased psoriasis-like dermatitis and epidermal STAT3 phosphorylation compared with wild-type mice, whereas mice with constitutive deletion of STAT3 in all T cells were similar to wild-type mice. Interestingly, mice with KC-inducible deletion of IL-6Rα had similar findings to those of K5-Stat3-/- mice, identifying IL-6/IL-6R as a predominant upstream signal for KC STAT3-induced psoriasis-like dermatitis. Moreover, psoriasis-like dermatitis inversely associated with type 1 immune gene products, especially CXCL10, whereas CXCL10 limited psoriasis-like dermatitis, suggesting that KC STAT3 signaling promoted psoriasis-like dermatitis by restricting downstream CXCL10 expression. Finally, treatment of mice with the pan-Jak inhibitor, tofacitinib, reduced psoriasis-like dermatitis and epidermal STAT3 phosphorylation. Taken together, STAT3 signaling in KCs rather than in T cells was a more important determinant for psoriasis-like dermatitis in a mechanism that involved upstream KC IL-6R signaling and downstream inhibition of type 1 immunity‒associated CXCL10 responses.


Assuntos
Dermatite , Psoríase , Animais , Quimiocina CXCL10 , Dermatite/patologia , Modelos Animais de Doenças , Interleucina-6/metabolismo , Queratinócitos/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de Interleucina-6 , Fator de Transcrição STAT3/metabolismo , Linfócitos T/metabolismo
12.
Microbiol Spectr ; 10(5): e0245121, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36106881

RESUMO

Staphylococcus aureus is an important cause of various infections in humans, including bacteremia, skin and soft tissue infections, and infections associated with implanted medical devices. The emergence of hospital- and community-acquired methicillin-resistant Staphylococcus aureus (MRSA) underscores the urgent and unmet need to develop novel, safe, and effective antibiotics against these multidrug-resistant clinical isolates. Oxazolidinone antibiotics such as linezolid have excellent oral bioavailability and provide coverage against MRSA infections. However, their widespread and long-term use is often limited by adverse effects, especially myelosuppression. TBI-223 is a novel oxazolidinone with potentially reduced myelosuppression, compared to linezolid, but its efficacy against MRSA infections is unknown. Therefore, the preclinical efficacy of TBI-223 (80 and 160 mg/kg twice daily) was compared with that of linezolid (40 and 80 mg/kg twice daily) and sham treatment in mouse models of MRSA bacteremia, skin wound infection, and orthopedic-implant-associated infection. The dosage was selected based on mouse pharmacokinetic analysis of both linezolid and TBI-223, as well as measurement of the MICs. In all three models, TBI-223 and linezolid had comparable dose-dependent efficacies in reducing bacterial burden and disease severity, compared with sham-treated control mice. Taken together, these findings indicate that TBI-223 represents a novel oxazolidinone antibiotic that may provide an additional option against MRSA infections. Future studies in larger animal models and clinical trials are warranted to translate these findings to humans. IMPORTANCE Staphylococcus aureus is the predominant cause of bloodstream, skin, and bone infections in humans. Resistance to commonly used antibiotics is a growing concern, making it more difficult to treat staphylococcal infections. Use of the oxazolidinone antibiotic linezolid against resistant strains is hindered by high rates of adverse reactions during prolonged therapy. Here, a new oxazolidinone named TBI-223 was tested against S. aureus in three mouse models of infection, i.e., bloodstream infection, skin infection, and bone infection. We found that TBI-223 was as effective as linezolid in these three models. Previous data suggest that TBI-223 has a better safety profile than linezolid. Taken together, these findings indicate that this new agent may provide an additional option against MRSA infections. Future studies in larger animal models and clinical trials are warranted to translate these findings to humans.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Oxazolidinonas , Infecções Estafilocócicas , Animais , Camundongos , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Antibacterianos/efeitos adversos , Bacteriemia/tratamento farmacológico , Linezolida/efeitos adversos , Testes de Sensibilidade Microbiana , Oxazolidinonas/efeitos adversos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
13.
Front Immunol ; 12: 624310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777005

RESUMO

Staphylococcus aureus causes a wide range of diseases from skin infections to life threatening invasive diseases such as bacteremia, endocarditis, pneumonia, surgical site infections, and osteomyelitis. Skin infections such as furuncles, carbuncles, folliculitis, erysipelas, and cellulitis constitute a large majority of infections caused by S. aureus (SA). These infections cause significant morbidity, healthcare costs, and represent a breeding ground for antimicrobial resistance. Furthermore, skin infection with SA is a major risk factor for invasive disease. Here we describe the pre-clinical efficacy of a multicomponent toxoid vaccine (IBT-V02) for prevention of S. aureus acute skin infections and recurrence. IBT-V02 targets six SA toxins including the pore-forming toxins alpha hemolysin (Hla), Panton-Valentine leukocidin (PVL), leukocidin AB (LukAB), and the superantigens toxic shock syndrome toxin-1 and staphylococcal enterotoxins A and B. Immunization of mice and rabbits with IBT-V02 generated antibodies with strong neutralizing activity against toxins included in the vaccine, as well as cross-neutralizing activity against multiple related toxins, and protected against skin infections by several clinically relevant SA strains of USA100, USA300, and USA1000 clones. Efficacy of the vaccine was also shown in non-naïve mice pre-exposed to S. aureus. Furthermore, vaccination with IBT-V02 not only protected mice from a primary infection but also demonstrated lasting efficacy against a secondary infection, while prior challenge with the bacteria alone was unable to protect against recurrence. Serum transfer studies in a primary infection model showed that antibodies are primarily responsible for the protective response.


Assuntos
Reinfecção/prevenção & controle , Infecções Cutâneas Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/farmacologia , Staphylococcus aureus/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Modelos Animais de Doenças , Feminino , Imunização , Imunogenicidade da Vacina , Masculino , Camundongos Endogâmicos BALB C , Coelhos , Reinfecção/imunologia , Reinfecção/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Vacinas Antiestafilocócicas/imunologia
14.
Sci Transl Med ; 13(601)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233954

RESUMO

Staphylococcus aureus causes most skin infections in humans, and the emergence of methicillin-resistant S. aureus (MRSA) strains is a serious public health threat. There is an urgent clinical need for nonantibiotic immunotherapies to treat MRSA infections and prevent the spread of antibiotic resistance. Here, we investigated the pan-caspase inhibitor quinoline-valine-aspartic acid-difluorophenoxymethyl ketone (Q-VD-OPH) for efficacy against MRSA skin infection in mice. A single systemic dose of Q-VD-OPH decreased skin lesion sizes and reduced bacterial burden compared with vehicle-treated or untreated mice. Although Q-VD-OPH inhibited inflammasome-dependent apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC) speck formation and caspase-1-mediated interleukin-1ß (IL-1ß) production, Q-VD-OPH maintained efficacy in mice deficient in IL-1ß, ASC, caspase-1, caspase-11, or gasdermin D. Thus, Q-VD-OPH efficacy was independent of inflammasome-mediated pyroptosis. Rather, Q-VD-OPH reduced apoptosis of monocytes and neutrophils. Moreover, Q-VD-OPH enhanced necroptosis of macrophages with concomitant increases in serum TNF and TNF-producing neutrophils, monocytes/macrophages, and neutrophils in the infected skin. Consistent with this, Q-VD-OPH lacked efficacy in mice deficient in TNF (with associated reduced neutrophil influx and necroptosis), in mice deficient in TNF/IL-1R and anti-TNF antibody-treated WT mice. In vitro studies revealed that combined caspase-3, caspase-8, and caspase-9 inhibition reduced apoptosis, and combined caspase-1, caspase-8, and caspase-11 inhibition increased TNF, suggesting a mechanism for Q-VD-OPH efficacy in vivo. Last, Q-VD-OPH also had a therapeutic effect against Streptococcus pyogenes and Pseudomonas aeruginosa skin infections in mice. Collectively, pan-caspase inhibition represents a potential host-directed immunotherapy against MRSA and other bacterial skin infections.


Assuntos
Caspases , Staphylococcus aureus Resistente à Meticilina , Animais , Caspase 1 , Inibidores de Caspase/farmacologia , Imunoterapia , Inflamassomos , Interleucina-1beta , Camundongos , Inibidores do Fator de Necrose Tumoral
15.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645549

RESUMO

IgE induced by type 2 immune responses in atopic dermatitis is implicated in the progression of atopic dermatitis to other allergic diseases, including food allergies, allergic rhinitis, and asthma. However, the keratinocyte-derived signals that promote IgE and ensuing allergic diseases remain unclear. Herein, in a mouse model of atopic dermatitis-like skin inflammation induced by epicutaneous Staphylococcus aureus exposure, keratinocyte release of IL­36α along with IL-4 triggered B cell IgE class-switching, plasma cell differentiation, and increased serum IgE levels-all of which were abrogated in IL-36R-deficient mice or anti-IL­36R-blocking antibody-treated mice. Moreover, skin allergen sensitization during S. aureus epicutaneous exposure-induced IL-36 responses was required for the development of allergen-specific lung inflammation. In translating these findings, elevated IL­36 cytokines in human atopic dermatitis skin and in IL­36 receptor antagonist-deficiency patients coincided with increased serum IgE levels. Collectively, keratinocyte-initiated IL­36 responses represent a key mechanism and potential therapeutic target against allergic diseases.


Assuntos
Dermatite Atópica/imunologia , Imunoglobulina E/imunologia , Interleucina-1/imunologia , Queratinócitos/imunologia , Plasmócitos/imunologia , Staphylococcus aureus/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Dermatite Atópica/genética , Dermatite Atópica/microbiologia , Humanos , Switching de Imunoglobulina , Imunoglobulina E/genética , Interleucina-1/genética , Interleucina-4/genética , Interleucina-4/imunologia , Queratinócitos/microbiologia , Camundongos , Camundongos Knockout , Plasmócitos/patologia
16.
Circulation ; 119(10): 1386-97, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19255345

RESUMO

BACKGROUND: Although preclinical data suggested that tumor necrosis factor-alpha (TNF) neutralization in heart failure (HF) would be beneficial, clinical trials of TNF antagonists were paradoxically negative. We hypothesized that TNF induces opposing inflammatory and remodeling responses in HF that are TNF-receptor (TNFR) specific. METHODS AND RESULTS: HF was induced in wild-type (WT), TNFR1(-/-), and TNFR2(-/-) mice via coronary ligation. Compared with WT HF, 4-week postinfarction survival was significantly improved in both TNFR1(-/-) and TNFR2(-/-) HF. Compared with sham, WT HF hearts exhibited significant remodeling with robust activation of nuclear factor (NF)-kappaB, p38 mitogen-activated protein kinase, and JNK2 and upregulation of TNF, interleukin (IL)-1beta, IL-6, and IL-10. Compared with WT HF, TNFR1(-/-) HF exhibited (1) improved remodeling, hypertrophy, and contractile function; (2) less apoptosis; and (3) diminished NF-kappaB, p38 mitogen-activated protein kinase, and JNK2 activation and cytokine expression. In contrast, TNFR2(-/-) HF showed exaggerated remodeling and hypertrophy, increased border zone fibrosis, augmented NF-kappaB and p38 mitogen-activated protein kinase activation, higher IL-1beta and IL-6 gene expression, greater activated macrophages, and greater apoptosis. Oxidative stress and diastolic function were improved in both TNFR1(-/-)and TNFR2(-/-) HF. In H9c2 cardiomyocytes, sustained NF-kappaB activation was proapoptotic, an effect dependent on TNFR1 signaling, whereas TNFR2 overexpression attenuated TNF-induced NF-kappaB activation. CONCLUSIONS: TNFR1 and TNFR2 have disparate and opposing effects on remodeling, hypertrophy, NF-kappaB, inflammation, and apoptosis in HF: TNFR1 exacerbates, whereas TNFR2 ameliorates, these events. However, signaling through both receptors is required to induce diastolic dysfunction and oxidative stress. TNFR-specific effects in HF should be considered when therapeutic anti-TNF strategies are developed.


Assuntos
Insuficiência Cardíaca/fisiopatologia , NF-kappa B/fisiologia , Receptores Tipo II do Fator de Necrose Tumoral/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Remodelação Ventricular/fisiologia , Animais , Apoptose , Cardiomegalia/etiologia , Cardiomegalia/fisiopatologia , Células Cultivadas , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Interleucinas/biossíntese , Interleucinas/genética , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Contração Miocárdica , Miocardite/etiologia , Miocardite/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/genética , Proteínas Recombinantes de Fusão/fisiologia , Regulação para Cima , Remodelação Ventricular/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
J Orthop Res ; 38(8): 1800-1809, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31975434

RESUMO

Orthopedic implant-associated infection (OIAI) is a major complication that leads to implant failure. In preclinical models of Staphylococcus aureus OIAI, osteomyelitis and septic arthritis, interleukin-1α (IL-1α), IL-1ß, and tumor necrosis factor (TNF) are induced, but whether they have interactive or distinctive roles in host defense are unclear. Herein, a S. aureus OIAI model was performed in mice deficient in IL-1α, IL-1ß, or TNF. Mice deficient in IL-1ß or TNF (to a lesser extent) but not IL-1α had increased bacterial burden at the site of the OIAI throughout the 28-day experiment. IL-1ß and TNF had a combined and critical role in host defense as mice deficient in both IL-1R and TNF (IL-1R/TNF-deficient mice) had a 40% mortality rate, which was associated with markedly increased bacterial burden at the site of the OIAI infection. Finally, IL-1α- and IL-1ß-deficient mice had impaired neutrophil recruitment whereas IL-1ß-, TNF-, and IL-1R/TNF-deficient mice all had impaired recruitment of both neutrophils and monocytes. Therefore, IL-1ß and TNF contributed to host defense against S. aureus OIAI and neutrophil recruitment was primarily mediated by IL-1ß and monocyte recruitment was mediated by both IL-1ß and TNF.


Assuntos
Interleucina-1beta/metabolismo , Infiltração de Neutrófilos , Infecções Relacionadas à Prótese/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Interleucina-1alfa/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infecções Relacionadas à Prótese/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo
18.
Methods Mol Biol ; 2069: 197-228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31523776

RESUMO

In vivo whole-animal optical (bioluminescence and fluorescence) imaging of Staphylococcus aureus infections has provided the opportunity to noninvasively and longitudinally monitor the dynamics of the bacterial burden and ensuing host immune responses in live anesthetized animals. Herein, we describe several different mouse models of S. aureus skin infection, skin inflammation, incisional/excisional wound infections, as well as mouse and rabbit models of orthopedic implant infection, which utilized this imaging technology. These animal models and imaging methodologies provide insights into the pathogenesis of these infections and innate and adaptive immune responses, as well as the preclinical evaluation of diagnostic and treatment modalities. Noninvasive approaches to investigate host-pathogen interactions are extremely important as virulent community-acquired methicillin-resistant S. aureus strains (CA-MRSA) are spreading through the normal human population, becoming more antibiotic resistant and creating a serious threat to public health.


Assuntos
Staphylococcus aureus Resistente à Meticilina/metabolismo , Imagem Óptica , Infecções Cutâneas Estafilocócicas , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Infecções Cutâneas Estafilocócicas/diagnóstico , Infecções Cutâneas Estafilocócicas/metabolismo , Infecções Cutâneas Estafilocócicas/patologia
19.
Biomaterials ; 212: 17-27, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31100480

RESUMO

Acute and chronic wounds affect millions and are associated with billions of dollars in healthcare costs. The use of healing markers, biochemical cues from biocompatible matrices and materials, and their correlation with wound healing has the potential to generate valuable diagnostic, prognostic, and therapeutic information. In this study, we developed a collagen-dextran oxygen-sensing biocomposite scaffold membrane in which a phosphorescent oxygen sensor was incorporated to monitor physiological oxygen using in vivo phosphorescence imaging in a preclinical mouse model of wound healing. The oxygen-sensing biocomposite scaffold membrane enabled the noninvasive and longitudinal monitoring of oxygenation changes in vivo in an approach compatible with commercially available preclinical in vivo imaging system instruments. This study provides a new and novel capability where a biocomposite material can serve as a biocompatible, biodegradable theranostic platform to promote and assess tissue oxygenation during wound healing.


Assuntos
Materiais Biocompatíveis/química , Nanomedicina Teranóstica , Alicerces Teciduais/química , Animais , Corantes/química , Dendrímeros/síntese química , Dendrímeros/química , Diabetes Mellitus Experimental/patologia , Membranas , Camundongos , Oxigênio/análise , Polietilenoglicóis/química , Cicatrização
20.
Sci Rep ; 9(1): 6774, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043631

RESUMO

Industrial hog operation (IHO) workers are at increased risk of carrying Staphylococcus aureus in their nares, particularly strains that are livestock-associated (LA) and multidrug-resistant. The pathogenicity of LA-S. aureus strains remains unclear, with some prior studies suggesting reduced transmission and virulence in humans compared to community-associated methicillin-resistant (CA-MRSA) S. aureus. The objective of this study was to determine the degree to which LA-S. aureus strains contracted by IHO workers cause disease relative to a representative CA-MRSA strain in a mouse model of skin and soft tissue infection (SSTI). Mice infected with CC398 LA-S. aureus strains (IHW398-1 and IHW398-2) developed larger lesion sizes with higher bacterial burden than mice infected with CA-MRSA (SF8300) (p < 0.05). The greatest lesion size and bacterial burden was seen with a CC398 strain that produced a recurrent SSTI in an IHO worker. The LA-S. aureus infected mice had decreased IL-1ß protein levels compared with CA-MRSA-infected mice (p < 0.05), suggesting a suboptimal host response to LA-S. aureus SSTIs. WGSA revealed heterogeneity in virulence factor and antimicrobial resistance genes carried by LA-S. aureus and CA-MRSA strains. The observed pathogenicity suggest that more attention should be placed on preventing the spread of LA-S. aureus into human populations.


Assuntos
Infecções Comunitárias Adquiridas/veterinária , Gado/microbiologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Doenças das Aves Domésticas/epidemiologia , Dermatopatias Infecciosas/veterinária , Infecções dos Tecidos Moles/veterinária , Infecções Estafilocócicas/veterinária , Animais , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Modelos Animais de Doenças , Camundongos , Doenças das Aves Domésticas/microbiologia , Dermatopatias Infecciosas/epidemiologia , Dermatopatias Infecciosas/microbiologia , Infecções dos Tecidos Moles/epidemiologia , Infecções dos Tecidos Moles/microbiologia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA