Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Anal Chem ; 95(34): 12586-12589, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37578459

RESUMO

The previously reported approach of orthogonal multipotential redox coding of all four DNA bases allowed only analysis of the relative nucleotide composition of short DNA stretches. Here, we present two methods for normalization of the electrochemical readout to facilitate the determination of the total nucleotide composition. The first method is based on the presence or absence of an internal standard of 7-deaza-2'-deoxyguanosine in a DNA primer. The exact composition of the DNA was elucidated upon two parallel analyses and the subtraction of the electrochemical signal intensities. The second approach took advantage of a 5'-viologen modified primer, with this fifth orthogonal redox label acting as a reference for signal normalization, thus allowing accurate electrochemical sequence analysis in a single read. Both approaches were tested using various sequences, and the voltammetric signals obtained were normalized using either the internal standard or the reference label and demonstrated to be in perfect agreement with the actual nucleotide composition, highlighting the potential for targeted DNA sequence analysis.


Assuntos
DNA , Nucleotídeos , Nucleotídeos/química , DNA/química , Primers do DNA , Oxirredução
2.
Anal Chem ; 95(38): 14192-14202, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37713191

RESUMO

The detection of single nucleotide polymorphisms (SNPs) is of increasing importance in many areas including clinical diagnostics, patient stratification for pharmacogenomics, and advanced forensic analysis. In the work reported, we apply a semiautomated system for solid-phase electrochemical melting curve analysis (éMCA) for the identification of the allele present at a specific SNP site associated with an increased risk of bone fracture and predisposition to osteoporosis. Asymmetric isothermal recombinase polymerase amplification using ferrocene labeled forward primers was employed to generate single stranded redox labeled amplicons. In a first approach to demonstrate the proof of concept of combining asymmetric RPA with solid-phase éMCA, a simplified system housing a multielectrode array within a polymeric microsystem, sandwiched between two aluminum plates of a heater device, was used. Sample manipulation through the microfluidic channel was controlled by a syringe pump, and an external Ag/AgCl reference electrode was employed. Individual electrodes of the array were functionalized with four different oligonucleotide probes, each probe equivalent in design with the exception of the middle nucleotide. The isothermally generated amplicons were allowed to hybridize to the surface-tethered probes and subsequently subjected to a controlled temperature ramp, and the melting of the duplex was monitored electrochemically. A clear difference between the fully complementary and a single mismatch was observed. Having demonstrated the proof-of-concept, a device for automated éMCA with increased flexibility to house diverse electrode arrays with internal quasi-gold reference electrodes, higher resolution, and broader melting temperature range was developed and exploited for the detection of SNP hetero/homozygosity. Using the optimized conditions, the system was applied to the identification of the allele present at an osteoporosis associated SNP site, rs2741856, in 10 real fingerprick/venous blood samples, with results validated using Sanger sequencing.


Assuntos
Osteoporose , Polimorfismo de Nucleotídeo Único , Humanos , Osteoporose/genética , Coleta de Amostras Sanguíneas , Alelos
3.
J Am Chem Soc ; 143(18): 7124-7134, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929195

RESUMO

We report a series of 2'-deoxyribonucleoside triphosphates bearing dicarba-nido-undecaborate ([C2B9H11]1-), [3,3'-iron-bis(1,2-dicarbollide)]- (FESAN, [Fe(C2B9H11)2]2-) or [3,3'-cobalt-bis(1,2-dicarbollide)]- (COSAN, [Co(C2B9H11)2]2-) groups prepared either through the Sonogashira cross-coupling or the CuAAC click reaction. The modified dNXTPs were substrates for KOD XL DNA polymerase in enzymatic synthesis of modified DNA through primer extension (PEX). The nido-carborane- and FESAN-modified nucleotides gave analytically useful oxidation signals in square-wave voltammetry and were used for redox labeling of DNA. The redox-modified DNA probes were prepared by PEX using tailed primers and were hybridized to electrode (gold or glassy carbon) containing capture oligonucleotides. The combination of nido-carborane- and FESAN-linked nucleotides with 7-ferrocenylethynyl-7-deaza-dATP and 7-deaza-dGTP allowed polymerase synthesis of DNA fully modified at all four nucleobases, and each of the redox labels gave four differentiable and ratiometric signals in voltammetry. Thus, the combination of these four redox labels constitutes the first fully orthogonal redox coding of all four canonical nucleobases, which can be used for determination of nucleobase composition of short DNA stretches in one simple PEX experiment with electrochemical readout.


Assuntos
Compostos de Boro/química , DNA/química , Técnicas Eletroquímicas , Metais Pesados/química , Pareamento de Bases , Estrutura Molecular , Nucleotídeos , Oxirredução , Análise de Sequência de DNA
4.
Anal Chem ; 93(44): 14578-14585, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34704755

RESUMO

Isothermal recombinase polymerase amplification-based solid-phase primer extension is used for the optical detection of a hypertrophic cardiomyopathy associated single nucleotide polymorphism (SNP) in a fingerprick blood sample. The assay exploits four thiolated primers which have the same sequences with the exception of the 3'-terminal base. Target DNA containing the SNP site hybridizes to all four of the immobilized probes, with primer extension only taking place from the primer containing the terminal base that is complementary to the SNP under interrogation. Biotinylated deoxynucleotide triphosphates are used in the primer extension, allowing postextension addition of streptavidin-poly-horseradish peroxidase to bind to the incorporated biotinylated dNTPs. The signal generated following substrate addition can then be measured optically. The percentage of biotinylated dNTPs and the duration of primer extension is optimized and the system applied to the identification of a SNP in a fingerprick blood sample. A methodology of thermal lysis using a 1 in 5 dilution of the fingerprick blood sample prior to application of 95 °C for 30 s is used to extract genomic DNA, which is directly used as a template for solid-phase primer extension on microtiter plates, followed by optical detection. The SNP in the fingerprick sample was identified and its identity corroborated using ion torrent next generation sequencing. Ongoing work is focused on extension to the multiplexed detection of SNPs in fingerprick and other biological samples.


Assuntos
DNA , Polimorfismo de Nucleotídeo Único , DNA/genética , Primers do DNA , Técnicas Genéticas , Nucleotídeos , Polimorfismo de Nucleotídeo Único/genética
5.
Langmuir ; 37(11): 3359-3369, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33705153

RESUMO

A 153-mer target DNA was amplified using ethynyl ferrocene dATP and a tailed forward primer resulting in a duplex with a single-stranded DNA tail for hybridization to a surface-tethered probe. A thiolated probe containing the sequence complementary to the tail as well as a 15 polythimine vertical spacer with a (CH2)6 spacer was immobilized on the surface of a gold electrode and hybridized to the ferrocene-modified complementary strand. Potential step chronoamperometry and cyclic voltammetry were used to probe the potential of zero charge, PZC, and the rate of heterogeneous electron transfer between the electrode and the immobilized ferrocene moieties. Chronoamperometry gives three, well-resolved exponential current-time decays corresponding to ferrocene centers located within 13 Å (4 bases) along the duplex. Significantly, the apparent standard heterogeneous electron transfer rate constant, kappo, observed depends on the initial potential, i.e., the rate of electron transfer at zero driving force is not the same for oxidation and reduction of the ferrocene labels. Moreover, the presence of ions, such as Sr2+, that strongly ion pair with the negatively charged DNA backbone modulates the electron transfer rate significantly. Specifically, kappo = 246 ± 23.5 and 14 ± 1.2 s-1 for reduction and oxidation, respectively, where the Sr2+ concentration is 10 mM, but the corresponding values in 1 M Sr2+ are 8 ± 0.8 and 150 ± 12 s-1. While other factors may be involved, these results are consistent with a model in which a low Sr2+ concentration and an initial potential that is negative of the PZC lead to electrostatic repulsion of the negatively charged DNA backbone and the negatively charged electrode. This leads to the DNA adopting an extended configuration (concertina open), resulting in a slow rate of heterogeneous electron transfer. In contrast, for ferrocene reduction, the initial potential is positive of PZC and the negatively charged DNA is electrostatically attracted to the electrode (concertina closed), giving a shorter electron transfer distance and a higher rate of heterogeneous electron transfer. When the Sr2+ concentration is high, the charge on the DNA backbone is compensated by the electrolyte and the charge on the electrode dominates the electron transfer dynamics and the opposite potential dependence is observed. These results open up the possibility of electromechanical switching using DNA superstructures.


Assuntos
DNA , Elétrons , DNA/genética , Eletrodos , Transporte de Elétrons , Metalocenos , Eletricidade Estática
6.
Chemistry ; 26(6): 1286-1291, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31725178

RESUMO

Three sets of 7-deazaadenine and cytosine nucleosides and nucleoside triphosphates bearing either unsubstituted ferrocene, octamethylferrocene and ferrocenecarboxamide linked through an alkyne tether to position 7 or 5, respectively, were designed and synthesized. The modified dNFcX TPs were good substrates for KOD XL DNA polymerase in primer extension and were used for enzymatic synthesis of redox-labelled DNA probes. Square-wave voltammetry showed that the octamethylferrocene oxidation potential was shifted to lower values, whilst the ferrocenecarboxamide was shifted to higher potentials, as compared to ferrocene. Tailed PEX products containing different ratios of Fc-labelled A (dAFc ) and FcPa-labelled C (dCFcPa ) were synthesized and hybridized with capture oligonucleotides immobilized on gold electrodes to study the electrochemistry of the redox-labelled DNA. Clearly distinguishable, fully orthogonal and ratiometric peaks were observed for the dAFc and dCFcPa bases in DNA, demonstrating their potential for use in redox coding of nucleobases and for the direct electrochemical measurement of the relative ratio of nucleobases in an unknown sequence of DNA.


Assuntos
DNA/química , Compostos Ferrosos/química , Metalocenos/química , Nucleotídeos/química , Coloração e Rotulagem/métodos , Citidina Trifosfato/química , DNA/metabolismo , Sondas de DNA/síntese química , Sondas de DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Técnicas Eletroquímicas , Oxirredução , Especificidade por Substrato
7.
Anal Biochem ; 598: 113705, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32246925

RESUMO

Genosensors for the detection of DNA via hybridisation normally require post-amplification processing such as the generation of single-stranded DNA and pre-detection labelling, complicating and lengthening the assay. A straightforward electrochemical genosensor, for the direct detection of isothermally generated nucleic acid amplicons via hybridisation is reported. The detection of Karlodinium armiger, responsible for harmful algae blooms was used as a model system to demonstrate the proof of concept. The approach exploits the use of specifically modified primers designed to generate amplicons with a central duplex flanked by a single-stranded tail at one end of the duplex and a horse-radish peroxidase on the other end. Individual gold electrodes of an array were functionalised with self-assembled monolayers of short thiolated DNA probes, designed to hybridise with the single-stranded tailed amplicon with the reporter enzyme label incorporated. The optimum amplification time was determined to be 60 min, at a fixed temperature of 37 °C. The hybridisation time to the enzyme labelled amplicon was optimised to be 10 min, but 2 min hybridisation time was also adequate. In this first example of using horse radish peroxidase-labelled primer in solution-phase recombinase polymerase amplification for subsequent detection via solid-phase hybridisation, the detection limit achieved was 0.4 fM, equivalent to 27622 cells/L, and the developed genosensor was applied to the detection of synthetic as well as genomic DNA, which had been extracted from a seawater sample.


Assuntos
Técnicas Biossensoriais , DNA de Protozoário/análise , Técnicas Eletroquímicas , Peroxidase do Rábano Silvestre/metabolismo , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Síntese em Fase Sólida , Sondas de DNA/química , DNA de Protozoário/metabolismo , Dinoflagellida/química , Temperatura
8.
Chemistry ; 24(43): 11177-11184, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29782690

RESUMO

Self-assembled monolayers formed by chemisorption of thiolated molecules on gold surfaces are widely applied for biosensing. Moreover, and due to the low stability of thiol-gold chemistry, contributions to the functionalisation of gold substrates with linkers that provide a more stable platform for the immobilisation of electroactive or biological molecules are highly appreciated. Herein, it is demonstrated that a carboxylated organotin compound can be successfully grafted onto gold substrates to form a highly stable organic layer with reactivity for subsequent binding to an aminated molecule. A battery of techniques were used to characterise the surface chemistry. The grafted layer was used to anchor aminoferrocene and subjected to both thermostability tests and long-term stability studies over a period of one year, demonstrating thermostability up to 90 °C and storage stability for at least 12 months at 4 °C protected from light. The stable surface tethering of molecules on gold substrates can be exploited in a plethora of applications, including molecular techniques, such as solid-phase amplification and solid-phase melting curve analysis, that require elevated temperature stability, as well as biosensors, which require long-term storage stability.

9.
Anal Biochem ; 556: 16-22, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29920236

RESUMO

DNA biosensors are attractive tools for genetic analysis as there is an increasing need for rapid and low-cost DNA analysis, primarily driven by applications in personalized pharmacogenomics, clinical diagnostics, rapid pathogen detection, food traceability and forensics. A rapid electrochemical genosensor detection methodology exploiting a combination of modified primers for solution-phase isothermal amplification, followed by rapid detection via hybridization on gold electrodes is reported. Modified reverse primers, exploiting a C18 spacer between the primer-binding site and an engineered single stranded tail, are used in a recombinase polymerase amplification reaction to produce an amplicon with a central duplex flanked by two single stranded tails. These tails are designed to be complementary to a gold electrode tethered capture oligo probe as well as a horseradish peroxidase labelled reporter oligo probe. The time required for hybridization of the isothermally generated amplicons with each of the immobilized and reporter probes was optimised to be 2 min, in both cases. The effect of amplification time and the limit of detection were evaluated using these hybridization times for both single stranded and double stranded DNA templates. The best detection limit of 70 fM for a ssDNA template was achieved using 45 min amplification, whilst for a dsDNA template, just 30 min amplification resulted in a slightly lower detection limit of 14 fM, whilst both 20 and 45 min amplification times were observed to provide detection limits of 71 and 72 fM, respectively, but 30 and 45 min amplification resulted in a much higher signal and sensitivity. The genosensor was applied to genomic DNA and real patient and control blood samples for detection of the coeliac disease associated DQB1*02 HLA allele, as a model system, demonstrating the possibility to carry out molecular diagnostics, combining amplification and detection in a rapid and facile manner.


Assuntos
Doença Celíaca/genética , Primers do DNA/genética , Técnicas Eletroquímicas/métodos , Cadeias beta de HLA-DQ/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Alelos , Humanos
10.
Chemistry ; 23(44): 10597-10603, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28544266

RESUMO

Redox-labeled nucleotides are of increasing interest for the fabrication of next generation molecular tools and should meet requirements of being thermally stable, sensitive, and compatible with polymerase-mediated incorporation while also being electrochemically discriminable. The synthesis and characterization of Keggin and Dawson polyoxometalate-deoxynucleotide (POM-dNTP) bioconjugates linked through 7-deaza-modified purines is described. The modified POM-dNTPs were used for polymerase-based amplification of a DNA sequence specific for Yersinia pestis and the amplified DNA detected using an electrochemical DNA sensor. This highlights the potential of polyoxometalates as thermally stable, sensitive and polymerase-compatible redox labels for exploitation in bioanalytical applications.


Assuntos
DNA Bacteriano/química , Técnicas Eletroquímicas , Nucleotídeos/química , Compostos de Tungstênio/química , Yersinia pestis/genética , DNA Bacteriano/metabolismo , Eletrodos , Eletroforese em Gel de Campo Pulsado , Ouro/química , Reação em Cadeia da Polimerase , Yersinia pestis/isolamento & purificação
11.
Electrophoresis ; 36(16): 1920-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26031238

RESUMO

Celiac disease is an auto-immune disorder induced by ingestion of gluten in genetically predisposed individuals. Its diagnostics is more accurate using a combination of immunologic and genetic tests to detect of high levels of certain auto-antibodies and the presence human leukocyte antigen HLA-DQ2 or HLA-DQ8 genetic markers. In this work, we report the design and testing of automated microsystems combining sample treatment, storage, fluidic transport, and detection in a single platform able to carry out genetic or serologic analysis for detection of celiac disease markers. These microsystems share a common footprint and many fluidic features and are thus able to perform a complete assay. The microsystem for the genetic assay extracts and amplifies the DNA prior to detection, while the serology microsystem contains a filter and chamber for the generation and subsequent dilution of plasma. The performance of both platforms is demonstrated and compared with reference methods with an excellent correlation, which makes the developed platform amenable for clinical studies.


Assuntos
Biomarcadores/sangue , Doença Celíaca/sangue , Técnicas Eletroquímicas/instrumentação , Técnicas Genéticas/instrumentação , Imunoensaio/instrumentação , Dispositivos Lab-On-A-Chip , Autoanticorpos/sangue , Doença Celíaca/genética , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Humanos
12.
Chemistry ; 21(2): 671-81, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25377261

RESUMO

A controlled, rapid, and potentiostat-free method has been developed for grafting the diazonium salt (3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate (DCOOH)) on gold and carbon substrates, based on a Zn-mediated chemical dediazonation. The highly stable thin layer organic platforms obtained were characterized by cyclic voltammetry, AFM, impedance, XP, and Raman spectroscopies. A dediazonation mechanism based on radical formation is proposed. Finally, DCOOH was proved as a linker to an aminated electroactive probe.

13.
Chemistry ; 21(49): 17721-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26490074

RESUMO

The bioconjugation of polyoxometalates (POMs), which are inorganic metal oxido clusters, to DNA strands to obtain functional labeled DNA primers and their potential use in electrochemical detection have been investigated. Activated monooxoacylated polyoxotungstates [SiW11 O39 {Sn(CH2 )2 CO}](8-) and [P2 W17 O61 {Sn(CH2 )2 CO}](6-) have been used to link to a 5'-NH2 terminated 21-mer DNA forward primer through amide coupling. The functionalized primer was characterized by using a battery of techniques, including electrophoresis, mass spectrometry, as well as IR and Raman spectroscopy. The functionality of the POM-labeled primers was demonstrated through hybridization with a surface-immobilized probe. Finally, the labeled primers were successfully used in the polymerase chain reaction (PCR) and the PCR products were characterized by using electrophoresis.


Assuntos
Primers do DNA/química , DNA/química , Compostos de Tungstênio/química , DNA/metabolismo , Primers do DNA/metabolismo , Eletroquímica , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase
14.
Anal Bioanal Chem ; 407(19): 5579-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25998137

RESUMO

Controlled Zn-mediated grafting of a thin layer of a diazonium salt was used to functionalise a carbon electrode with ruthenium(II)-tris-bipyridine (Ru)-labelled DNA for use as a capture probe in an electrochemiluminescent genosensor. A secondary reporter probe was labelled with a ferrocene (Fc) molecule, and in the presence of the single-stranded DNA target a genocomplex formed, where the Fc-label effectively quenched the electrochemiluminescence of the signal emitted from the Ru-label. The spacing of the labels for maximum sensitivity and minimum detection limit was optimised, and the signal reproducibility and stability of the method was established.


Assuntos
DNA/análise , Compostos de Diazônio/química , Técnicas Eletroquímicas/instrumentação , Zinco/química , Limite de Detecção , Luminescência , Reprodutibilidade dos Testes
15.
Chemistry ; 20(25): 7646-54, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24829137

RESUMO

Carbon is a highly adaptable family of materials and is one of the most chemically stable materials known, providing a remarkable platform for the development of tunable molecular interfaces. Herein, we report a two-step process for the electrochemical hydrogenation of glassy carbon followed by either chemical or electrochemical chlorination to provide a highly reactive surface for further functionalization. The carbon surface at each stage of the process is characterized by AFM, SEM, Raman, attenuated total reflectance (ATR) FTIR, X-ray photoelectron spectroscopy (XPS), and electroanalytical techniques. Electrochemical chlorination of hydrogen-terminated surfaces is achieved in just 5 min at room temperature with hydrochloric acid, and chemical chlorination is performed with phosphorus pentachloride at 50 °C over a three-hour period. A more controlled and uniform surface is obtained using the electrochemical approach, as chemical chlorination is observed to damage the glassy carbon surface. A ferrocene-labeled alkylthiol is used as a model system to demonstrate the genericity and potential application of the highly reactive chlorinated surface formed, and the methodology is optimized. This process is then applied to thiolated DNA, and the functionality of the immobilized DNA probe is demonstrated. XPS reveals the covalent bond formed to be a C-S bond. The thermal stability of the thiolated molecules anchored on the glassy carbon is evaluated, and is found to be far superior to that on gold surfaces. This is the first report on the electrochemical hydrogenation and electrochemical chlorination of a glassy carbon surface, and this facile process can be applied to the highly stable functionalization of carbon surfaces with a plethora of diverse molecules, finding widespread applications.

16.
Langmuir ; 29(49): 15405-13, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24246054

RESUMO

The synthesis of highly stable ultrasmall monodisperse populations of palladium nanoparticles in the range of 1-3 nm in size was achieved via polyol reduction within 1,2-dioleoyl-sn-glycero-3-phosphor-rac-(1-glycerol) liposomal nanoreactors exploiting glycerol as both reducing and stabilizing agent. The liposome-based green method was compared with synthesis in solution, and the reducing agent concentration and the lipidic composition of the liposomal nanoreactors were demonstrated to have a strong effect on the final size and homogeneity of the palladium nanoparticles. Glycerol molecules acting as capping agent demonstrated the ability to stabilize the palladium nanoparticles over a long period of time, maintaining their homogeneity in size and shape. The obtained palladium nanoparticles were characterized using transmission electron microscopy, selected area electron diffraction, Fourier transform infrared and Raman spectroscopies, X-ray diffraction, and dynamic light scattering to determine their morphology, size, charge, surface chemistry, and crystal structure. The catalytic activity of the palladium nanoparticles was also tested for a reduction reaction.


Assuntos
Glicerol/química , Lipossomos/química , Nanopartículas/química , Paládio/química , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
17.
ACS Cent Sci ; 9(8): 1591-1602, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37637735

RESUMO

Osteoporosis is a multifactorial disease influenced by genetic and environmental factors, which contributes to an increased risk of bone fracture, but early diagnosis of this disease cannot be achieved using current techniques. We describe a generic platform for the targeted electrochemical genotyping of SNPs identified by genome-wide association studies to be associated with a genetic predisposition to osteoporosis. The platform exploits isothermal solid-phase primer elongation with ferrocene-labeled nucleoside triphosphates. Thiolated reverse primers designed for each SNP were immobilized on individual gold electrodes of an array. These primers are designed to hybridize to the SNP site at their 3'OH terminal, and primer elongation occurs only where there is 100% complementarity, facilitating the identification and heterozygosity of each SNP under interrogation. The platform was applied to real blood samples, which were thermally lysed and directly used without the need for DNA extraction or purification. The results were validated using Taqman SNP genotyping assays and Sanger sequencing. The assay is complete in just 15 min with a total cost of 0.3€ per electrode. The platform is completely generic and has immense potential for deployment at the point of need in an automated device for targeted SNP genotyping with the only required end-user intervention being sample addition.

18.
Anal Bioanal Chem ; 403(1): 195-202, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327933

RESUMO

In this paper, we describe the development of an enzyme-linked oligonucleotide assay for the detection of a human leukocyte antigen allele associated with celiac disease based on cyclodextrin-modified polymeric surfaces. The surface of maleimide-pre-coated plates was modified with a layer of thiolated cyclodextrin polymer and used for the supramolecular capture of adamantane or ferrocene-modified carboxymethylcellulose polymers bearing DNA probes. The assay was optimised in terms of incubation time, temperature, and surface chemistry and applied to the highly sensitive and selective detection of HLA sequences with a limit of detection of 0.7 nM. A real sample analysed using this platform showed an excellent correlation with maleimide-activated plates using thiolated DNA probes.


Assuntos
Colorimetria/métodos , Ciclodextrinas/química , Oligonucleotídeos/química , Polímeros/química , Sequência de Bases , Sondas de DNA , Limite de Detecção , Reação em Cadeia da Polimerase , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
19.
Biosensors (Basel) ; 12(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36354481

RESUMO

Aptamer-based assays and sensors are garnering increasing interest as alternatives to antibodies, particularly due to their increased flexibility for implementation in alternative assay formats, as they can be employed in assays designed for nucleic acids, such as molecular aptamer beacons or aptamer detection combined with amplification. In this work, we took advantage of the inherent nucleic acid nature of aptamers to enhance sensitivity in a rapid and facile assay format. An aptamer selected against the anaphylactic allergen ß-conglutin was used to demonstrate the proof of concept. The aptamer was generated by using biotinylated dUTPs, and the affinity of the modified aptamer as compared to the unmodified aptamer was determined by using surface plasmon resonance to calculate the dissociation constant (KD), and no significant improvement in affinity due to the incorporation of the hydrophobic biotin was observed. The modified aptamer was then applied in a colorimetric competitive enzyme-linked oligonucleotide assay, where ß-conglutin was immobilized on the wells of a microtiter plate, competing with ß-conglutin free in solution for the binding to the aptamer. The limit of detection achieved was 68 pM, demonstrating an improvement in detection limit of three orders of magnitude as compared with the aptamer simply modified with a terminal biotin label. The concept was then exploited by using electrochemical detection and screen-printed electrodes where detection limits of 326 fM and 7.89 fM were obtained with carbon and gold electrodes, respectively. The assay format is generic in nature and can be applied to all aptamers, facilitating an easy and cost-effective means to achieve lower detection limits.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ácidos Nucleicos , Aptâmeros de Nucleotídeos/química , Biotina , Ressonância de Plasmônio de Superfície , Ouro/química
20.
Biosens Bioelectron ; 198: 113825, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838372

RESUMO

Hypertrophic cardiomyopathies (HCM) are the principal cause of sudden cardiac death in young athletes and it is estimated that 1 in 500 people have HCM. The aim of this work was to develop an electrochemical platform for the detection of HCM-associated SNP in the Myosin Heavy Chain 7 (MYH7) gene, in fingerprick blood samples. The platform exploits isothermal solid-phase primer elongation using recombinase polymerase amplification with either individual or a combination of four ferrocene-labelled nucleoside triphosphates. Four thiolated reverse primers containing a variable base at their 3' end were immobilised on individual gold electrodes of an array. Following hybridisation with target DNA, solid phase recombinase polymerase amplification was carried out and primer elongation incorporating the ferrocene labelled oligonucleotides was only detected at one of the electrodes, thus facilitating identification of the SNP under interrogation. The assay was applied to the direct detection of the SNP in fingerprick blood samples from eight different individuals, with the results obtained corroborating with next generation sequencing. The ability to be able to robustly identify the SNP using a 10 µL fingerprick sample, demonstrates that SNP discrimination is achieved using low femtomolar (ca. 8 × 105 copies DNA) levels of DNA.


Assuntos
Técnicas Biossensoriais , Recombinases , DNA/genética , Humanos , Metalocenos , Polimorfismo de Nucleotídeo Único , Recombinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA