Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(8): 5470-5479, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38355475

RESUMO

Macrocycles containing chiral organic dyes are highly valuable for the development of supramolecular circularly polarized luminescent (CPL) materials, where a preorganized chiral framework is conducive to directing π-π self-assembly and delivering a strong and persistent CPL signal. Here, perylene diimides (PDIs) are an excellent choice for the organic dye component because, alongside their tunable photophysical and self-assembly properties, functionalization of the PDI's core yields a twisted, chiral π-system, capable of CPL. However, configurationally stable PDI-based macrocycles are rare, and those that are also capable of π-π self-assembly beyond dimers are unprecedented, both of which are advantageous for robust self-assembled chiroptical materials. In this work, we report the first bay-connected bis-PDI macrocycle that is configurationally stable (ΔG⧧ > 155 kJ mol-1). We use this chirally locked macrocycle to uncover new knowledge of chiral PDI self-assembly and to perform new quantitative CPL imaging of the resulting single-crystal materials. As such, we discover that the chirality of a 1,7-disubstituted PDI provides a rational route to designing H-, J- and concomitant H- and J-type self-assembled materials, important arrangements for optimizing (chir)optical and charge/energy transport properties. Indeed, we reveal that CPL is amplified in the single crystals of our chiral macrocycle by quantifying the degree of emitted light circular polarization from such materials for the first time using CPL-Laser Scanning Confocal Microscopy.

2.
J Am Chem Soc ; 144(27): 12290-12298, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35763425

RESUMO

This work showcases chiral complementarity in aromatic stacking interactions as an effective tool to optimize the chiroptical and electrochemical properties of perylene diimides (PDIs). PDIs are a notable class of robust dye molecules and their rich photo- and electrochemistry and potential chirality make them ideal organic building blocks for chiral optoelectronic materials. By exploiting the new bay connectivity of twisted PDIs, a dynamic bis-PDI macrocycle (the "Pink Box") is realized in which homochiral PDI-PDI π-π stacking interactions are switched on exclusively. Using a range of experimental and computational techniques, we uncover three important implications of the macrocycle's chiral complementarity for PDI optoelectronics. First, the homochiral intramolecular π-π interactions anchor the twisted PDI units, yielding enantiomers with half-lives extended over 400-fold, from minutes to days (in solution) or years (in the solid state). Second, homochiral H-type aggregation affords the macrocycle red-shifted circularly polarized luminescence and one of the highest dissymmetry factors of any small organic molecule in solution (glum = 10-2 at 675 nm). Finally, excellent through-space PDI-PDI π-orbital overlap stabilizes PDI reduced states, akin to covalent functionalization with electron-withdrawing groups.


Assuntos
Perileno , Eletroquímica , Elétrons , Perileno/química , Estereoisomerismo
3.
Chem Soc Rev ; 50(7): 4411-4431, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33606857

RESUMO

Developments in the confinement of phosphines within micro- or nano-environments are explored. Phosphines are ubiquitous across metal coordination chemistry and underpin some of the most famous homogeneous transition metal catalysts. Constraining phosphines within confined environments influences not only their behaviour but also that of their metal complexes. Notable examples include the use of metal-organic frameworks (MOFs) or metal-organic cages (MOCs) to support phosphines which demonstrate how the microenvironment within such constructs leads to reactivity modification. The development of phosphine confinement is explored and parallels are drawn with related constrained macrocyclic systems and mechanically interlocked molecules. The review concludes by identifying areas that remain a challenge and those that will provide new avenues for research.

4.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557805

RESUMO

Donor-acceptor dyads and triads comprising core-substituted naphthalene diimide (NDI) chromophores and either phenothiazine or phenoxazine donors are described. Synthesis combined with electrochemical and spectroelectrochemical investigations facilitates characterisation of the various redox states of these molecules, confirming the ability to combine arrays of electron donating and accepting moieties into single species that retain the redox properties of these individual moieties.

5.
Nat Mater ; 23(2): 172-173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123814
6.
Chem Commun (Camb) ; 60(4): 452-455, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38088086

RESUMO

Hydrogen-bonded organic frameworks (HOFs) constructed from naphthalene-diimide bearing tectons undergo photochromic changes whilst forming radical bearing species within the framework structure.

7.
Chem Sci ; 15(15): 5516-5524, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638241

RESUMO

This work sheds new light on the stereoselective synthesis of chiral macrocycles containing twisted aromatic units, valuable π-conjugated materials for recognition, sensing, and optoelectronics. For the first time, we use the Curtin-Hammett principle to investigate a chiral macrocyclisation reaction, revealing the potential for supramolecular π-π interactions to direct the outcome of a dynamic kinetic resolution, favouring the opposite macrocyclic product to that expected under reversible, thermodynamically controlled conditions. Specifically, a dynamic, racemic perylene diimide dye (1 : 1 P : M) is strapped with an enantiopure (S)-1,1'-bi-2-naphthol group (P-BINOL) to form two diastereomeric macrocyclic products, the homochiral macrocycle (PP) and the heterochiral species (PM). We find there is notable selectivity for the PM macrocycle (dr = 4 : 1), which is rationalised by kinetic templation from intramolecular aromatic non-covalent interactions between the P-BINOL π-donor and the M-PDI π-acceptor during the macrocyclisation reaction.

8.
Dalton Trans ; 51(25): 9748-9769, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35703728

RESUMO

[FeFe]-Ase biomimics containing a redox-active ferrocenyl diphosphine have been prepared and their ability to reduce protons and oxidise H2 studied, including 1,1'-bis(diphenylphosphino)ferrocene (dppf) complexes Fe2(CO)4(µ-dppf)(µ-S(CH2)nS) (n = 2, edt; n = 3, pdt) and Fe2(CO)4(µ-dppf)(µ-SAr)2 (Ar = Ph, p-tolyl, p-C6H4NH2), together with the more electron-rich 1,1'-bis(dicyclohexylphosphino)ferrocene (dcpf) complex Fe2(CO)4(µ-dcpf)(µ-pdt). Crystallographic characterisation of four of these show similar overall structures, the diphosphine spanning an elongated Fe-Fe bond (ca. 2.6 Å), lying trans to one sulfur and cis to the second. In solution the diphosphine is flexible, as shown by VT NMR studies, suggesting that Fe2⋯Fe distances of ca. 4.5-4.7 Å in the solid state vary in solution. Cyclic voltammetry, IR spectroelectrochemistry and DFT calculations have been used to develop a detailed picture of electronic and structural changes occurring upon oxidation. In MeCN, Fe2(CO)4(µ-dppf)(µ-pdt) shows two chemically reversible one-electron oxidations occurring sequentially at Fe2 and Fc sites respectively. For other dppf complexes, reversibility of the first oxidation is poor, consistent with an irreversible structural change upon removal of an electron from the Fe2 centre. In CH2Cl2, Fe2(CO)4(µ-dcpf)(µ-pdt) shows a quasi-reversible first oxidation together with subsequent oxidations suggesting that the generated cation has some stability but slowly rearranges. Both pdt complexes readily protonate upon addition of HBF4·Et2O to afford bridging-hydride cations, [Fe2(CO)4(µ-H)(µ-dcpf)(µ-pdt)]+, species which catalytically reduce protons to generate H2. In the presence of pyridine, [Fe2(CO)4(µ-dppf)(µ-pdt)]2+ catalytically oxidises H2 but none of the other complexes do this, probably resulting from the irreversible nature of their first oxidation. Mechanistic details of both proton reduction and H2 oxidation have been studied by DFT allowing speculative reaction schemes to be developed.


Assuntos
Hidrogenase , Cristalografia por Raios X , Hidrogenase/química , Ligantes , Oxirredução , Prótons
9.
Dalton Trans ; 51(47): 18136-18142, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36383076

RESUMO

A series of Pd(II) complexes containing ortho-cyano-aminothiophenolate (ocap) ligands have been prepared and their molecular structures elucidated. Hg(II) ocap complexes, [Hg{SC6H3XN(CN)}]n (X = H, Me) (1), react with Na2S to afford HgS and Na2[ocap] which reacts in situ with K2[PdCl4] to afford palladium ocap complexes [Pd{SC6H3XN(CN)}]n (2). A second route to these coordination polymers has also been developed from reactions of 2-aminobenzothiazole (abt) complexes, trans-PdCl2(abt)2 (3), with NaOH. We have not been able to crystallographically characterise coordination polymers 2, but addition of PPh3, a range of phosphines and cyclic diamines affords mono and binuclear complexes in which the ocap ligand adopts different coordination geometries. With PPh3, binuclear [Pd(µ-κ2,κ1-ocap)(PPh3)]2 (4) results, in which the ocap bridges the Pd2 centre acting as an S,N-chelate to one metal centre and binding the second via coordination of the cyanide nitrogen. In contrast, with diphosphines, Ph2P(CH2)nPPh2 (n = 1-4), mononuclear species predominate as shown in the molecular structures of Pd(κ2-ocap){κ2-Ph2P(CH2)nPPh2} (5-7; n = 1-3). With 2,2'-bipy and 1,10-phen we propose that related monomeric chelates Pd(κ2-ocap)(κ2-bipy) (9) and Pd(κ2-ocap)(κ2-phen) (10) result but we have been unable to substantiate this crystallographically. Addition of HgCl2(phen) to 9a (generated in situ) affords heterobimetallic Pd(κ2-phen)(µ-κ2,κ1-ocap)HgCl2(κ2-phen) (11), in which Hg(II) is coordinated through the ring sulfur.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA