Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Small ; 18(42): e2204116, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36114151

RESUMO

The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3 ) is a potentially carbon-neutral and decentralized supplement to the established Haber-Bosch process. Catalytic activation of the highly stable dinitrogen molecules remains a great challenge. Especially metal-free nitrogen-doped carbon catalysts do not often reach the desired selectivity and ammonia production rates due to their low concentration of NRR active sites and possible instability of heteroatoms under electrochemical potential, which can even contribute to false positive results. In this context, the electrochemical activation of nitrogen-doped carbon electrocatalysts is an attractive, but not yet established method to create NRR catalytic sites. Herein, a metal-free C2 N material (HAT-700) is electrochemically etched prior to application in NRR to form active edge-sites originating from the removal of terminal nitrile groups. Resulting activated metal-free HAT-700-A shows remarkable catalytic activity in electrochemical nitrogen fixation with a maximum Faradaic efficiency of 11.4% and NH3 yield of 5.86 µg mg-1 cat h-1 . Experimental results and theoretical calculations are combined, and it is proposed that carbon radicals formed during activation together with adjacent pyridinic nitrogen atoms play a crucial role in nitrogen adsorption and activation. The results demonstrate the possibility to create catalytically active sites on purpose by etching labile functional groups prior to NRR.


Assuntos
Carbono , Fixação de Nitrogênio , Carbono/química , Amônia , Domínio Catalítico , Nitrogênio/química , Metais , Nitrilas
2.
J Am Chem Soc ; 143(25): 9377-9384, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34128662

RESUMO

Ionic liquids are well known for their high gas absorption capacity. It is shown that this is not a solvent constant, but can be enhanced by another factor of 10 by pore confinement, here of the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate (EmimOAc) in the pores of carbon materials. A matrix of four different carbon compounds with micro- and mesopores as well as with and without nitrogen doping is utilized to investigate the influence of the carbons structure on the nitrogen uptake in the pore-confined EmimOAc. In general, the absorption is most improved for IL in micropores and in nitrogen-doped carbon. This effect is so large that it is already seen in TGA and DSC experiments. Due to the low vapor pressure of the IL, standard volumetric sorption experiments can be used to quantify details of this effect. It is reasoned that it is the change of the molecular arrangement of the ions in the restricted space of the pores that creates additional free volume to host molecular nitrogen.

3.
Small ; 17(19): e2007508, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33773047

RESUMO

Nanoporous carbon materials can cover a remarkably wide range of physicochemical properties. They are widely applied in electrochemical energy storage and electrocatalysis. As a matter of fact, all these applications combine a chemical process at the electrode-electrolyte interface with the transport (and possibly the transfer) of electrons. This leads to multiple requirements which can hardly be fulfilled by one and the same material. This "functionality-conductivity-dilemma" can be minimized when multiple carbon-based compounds are combined into porous all-carbon hybrid nanomaterials. This article is giving a broad and general perspective on this approach from the viewpoint of materials chemists. The problem and existing solutions are first summarized. This is followed by an overview of the most important design principles for such porous materials, a chapter discussing recent examples from different fields where the formation of comparable structures has already been successfully applied, and an outlook over the future development of this field that is foreseen.

4.
Small ; 17(48): e2006767, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33615707

RESUMO

Hard carbon is the material of choice for sodium ion battery anodes. Capacities comparable to those of lithium/graphite can be reached, but the understanding of the underlying sodium storage mechanisms remains fragmentary. A two-step process is commonly observed, where sodium first adsorbs to polar sites of the carbon ("sloping region") and subsequently fills small voids in the material ("plateau region"). To study the impact of nitrogen functionalities and pore geometry on sodium storage, a systematic series of nitrogen-doped hard carbons is synthesized. The nitrogen content is found to contribute to sloping capacity by binding sodium ions at edges and defects, whereas higher plateau capacities are found for materials with less nitrogen content and more extensive graphene layers, suggesting the formation of 2D sodium structures stabilized by graphene-like pore walls. In fact, up to 84% of the plateau capacity is measured at potentials less than 0 V versus metallic Na, that is, quasimetallic sodium can be stabilized in such structure motifs. Finally, gas physisorption measurements are related to charge-discharge data to identify the energy storage relevant pore architectures. Interestingly, these are pores inaccessible to probe gases and electrolytes, suggesting a new view on such "closed pores" required for efficient sodium storage.

5.
Phys Chem Chem Phys ; 23(19): 11488-11500, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33959733

RESUMO

To render the sodium ion battery (SIB) competitive among other technologies, the processes behind sodium storage in hard carbon anodes must be understood. For this purpose, electrochemical impedance spectroscopy (EIS) is usually undervalued, since fitting the spectra with equivalent circuit models requires an a priori knowledge about the system at hand. The analysis of the distribution of relaxation times (DRT) is an alternative, which refrains from fitting arbitrarily nested equivalent circuits. In this paper, the sodiation and desodiation of a hard carbon anode is studied by EIS at different states of charge (SOC). By reconstructing the DRT function, highly resolved information on the number and relative contribution of individual electrochemical processes is derived. During the sloping part of the sodiation curve, mass transport is found to be the most dominant source of resistance but rapidly diminishes when the plateau phase is reached. An equivalent circuit model qualitatively reproducing the experimental data of the sloping region was built upon the DRT results, which is particularly useful for future EIS studies on hard carbon SIB anodes. More importantly, this work contributes to establish EIS as a practical tool to directly study electrode processes without the bias of a previously assumed model.

6.
Angew Chem Int Ed Engl ; 60(36): 19797-19803, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34043858

RESUMO

Covalent organic frameworks (COFs) have emerged as an important class of organic semiconductors and photocatalysts for the hydrogen evolution reaction (HER)from water. To optimize their photocatalytic activity, typically the organic moieties constituting the frameworks are considered and the most suitable combinations of them are searched for. However, the effect of the covalent linkage between these moieties on the photocatalytic performance has rarely been studied. Herein, we demonstrate that donor-acceptor (D-A) type imine-linked COFs can produce hydrogen with a rate as high as 20.7 mmol g-1 h-1 under visible light irradiation, upon protonation of their imine linkages. A significant red-shift in light absorbance, largely improved charge separation efficiency, and an increase in hydrophilicity triggered by protonation of the Schiff-base moieties in the imine-linked COFs, are responsible for the improved photocatalytic performance.

7.
Angew Chem Int Ed Engl ; 59(23): 9067-9073, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32155311

RESUMO

Efficient and low-cost anode materials for the sodium-ion battery are highly desired to enable more economic energy storage. Effects on an ultrathin carbon nitride film deposited on a copper metal electrode are presented. The combination of effects show an unusually high capacity to store sodium metal. The g-C3 N4 film is as thin as 10 nm and can be fabricated by an efficient, facile, and general chemical-vapor deposition method. A high reversible capacity of formally up to 51 Ah g-1 indicates that the Na is not only stored in the carbon nitride as such, but that carbon nitride activates also the metal for reversible Na-deposition, while forming at the same time an solid electrolyte interface layer avoiding direct contact of the metallic phase with the liquid electrolyte.

8.
Angew Chem Int Ed Engl ; 59(35): 15061-15068, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32412175

RESUMO

Polymeric carbon nitride materials have been used in numerous light-to-energy conversion applications ranging from photocatalysis to optoelectronics. For a new application and modelling, we first refined the crystal structure of potassium poly(heptazine imide) (K-PHI)-a benchmark carbon nitride material in photocatalysis-by means of X-ray powder diffraction and transmission electron microscopy. Using the crystal structure of K-PHI, periodic DFT calculations were performed to calculate the density-of-states (DOS) and localize intra band states (IBS). IBS were found to be responsible for the enhanced K-PHI absorption in the near IR region, to serve as electron traps, and to be useful in energy transfer reactions. Once excited with visible light, carbon nitrides, in addition to the direct recombination, can also undergo singlet-triplet intersystem crossing. We utilized the K-PHI centered triplet excited states to trigger a cascade of energy transfer reactions and, in turn, to sensitize, for example, singlet oxygen (1 O2 ) as a starting point to synthesis up to 25 different N-rich heterocycles.

9.
Small ; 15(37): e1901986, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31264774

RESUMO

Synthesis of 3D flower-like zinc-nitrilotriacetic acid (ZnNTA) mesocrystals and their conformal transformation to hierarchically porous N-doped carbon superstructures is reported. During the solvothermal reaction, 2D nanosheet primary building blocks undergo oriented attachment and mesoscale assembly forming stacked layers. The secondary nucleation and growth preferentially occurs at the edges and defects of the layers, leading to formation of 3D flower-like mesocrystals comprised of interconnected 2D micropetals. By simply varying the pyrolysis temperature (550-1000 °C) and the removal method of in the situ-generated Zn species, nonporous parent mesocrystals are transformed to hierarchically porous carbon flowers with controllable surface area (970-1605 m2 g-1 ), nitrogen content (3.4-14.1 at%), pore volume (0.95-2.19 cm3 g-1 ), as well as pore diameter and structures. The carbon flowers prepared at 550 °C show high CO2 /N2 selectivity due to the high nitrogen content and the large fraction of (ultra)micropores, which can greatly increase the CO2 affinity. The results show that the physicochemical properties of carbons are highly dependent on the thermal transformation and associated pore formation process, rather than directly inherited from parent precursors. The present strategy demonstrates metal-organic mesocrystals as a facile and versatile means toward 3D hierarchical carbon superstructures that are attractive for a number of potential applications.

10.
Angew Chem Int Ed Engl ; 58(37): 13101-13106, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31257671

RESUMO

The electrochemical conversion of N2 at ambient conditions using renewably generated electricity is an attractive approach for sustainable ammonia (NH3 ) production. Considering the chemical inertness of N2 , rational design of efficient and stable catalysts is required. Therefore, in this work, it is demonstrated that a C-doped TiO2 /C (C-Tix Oy /C) material derived from the metal-organic framework (MOF) MIL-125(Ti) can achieve a high Faradaic efficiency (FE) of 17.8 %, which even surpasses most of the established noble metal-based catalysts. On the basis of the experimental results and theoretical calculations, the remarkable properties of the catalysts can be attributed to the doping of carbon atoms into oxygen vacancies (OVs) and the formation of Ti-C bonds in C-Tix Oy . This binding motive is found to be energetically more favorable for N2 activation compared to the non-substituted OVs in TiO2 . This work elucidates that electrochemical N2 reduction reaction (NRR) performance can be largely improved by creating catalytically active centers through rational substitution of anions into metal oxides.

11.
Angew Chem Int Ed Engl ; 57(33): 10765-10770, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-29882376

RESUMO

The targeted thermal condensation of a hexaazatriphenylene-based precursor leads to porous and oxidation-resistant ("noble") carbons. Simple condensation of the pre-aligned molecular precursor produces nitrogen-rich carbons with C2 N-type stoichiometry. Despite the absence of any porogen and metal species involved in the synthesis, the specific surface areas of the molecular carbons reach up to 1000 m2 g-1 due to the significant microporosity of the materials. The content and type of nitrogen species is controllable by the carbonization temperature whilst porosity remains largely unaffected at the same time. The resulting noble carbons are distinguished by a highly polarizable micropore structure and have thus high adsorption affinity towards molecules such as H2 O and CO2 . This molecular precursor approach opens new possibilities for the synthesis of porous noble carbons under molecular control, providing access to the special physical properties of the C2 N structure and extending the known spectrum of classical porous carbons.

12.
Chemistry ; 22(22): 7324-51, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27001631

RESUMO

Lithium-sulfur batteries are among the most promising electrochemical energy storage devices of the near future. Especially the low price and abundant availability of sulfur as the cathode material and the high theoretical capacity in comparison to state-of-the art lithium-ion technologies are attractive features. Despite significant research achievements that have been made over the last years, fundamental (electro-) chemical questions still remain unanswered. This review addresses ten crucial questions associated with lithium-sulfur batteries and critically evaluates current research with respect to them. The sulfur-carbon composite cathode is a particular focus, but its complex interplay with other hardware components in the cell, such as the electrolyte and the anode, necessitates a critical discussion of other cell components. Modern in situ characterisation methods are ideally suited to illuminate the role of each component. This article does not pretend to summarise all recently published data, but instead is a critical overview over lithium-sulfur batteries based on recent research findings.

13.
Small ; 11(12): 1430-4, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25336342

RESUMO

A class of 3D PdNi bimetallic nano-materials with porous nanostructures is synthesized using a facile and versatile approach at room temperature. Due to their porous nanostructures, their clean surfaces, as well as the synergistic effect between their compositions, the as-prepared PdNi exhibit greatly enhanced activity and stability towards methanol electrooxidation in an alkaline medium, holding great promise in fuel cells.

14.
Chemistry ; 21(42): 14753-7, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26306833

RESUMO

A novel synthesis method for ordered mesoporous carbons is presented. The inverse replication of a silica template was achieved using the carbonization of sucrose within mesoporous KIT-6. Instead of liquid acid etching, as in classical nanocasting, a novel dry chlorine etching procedure for template removal is presented for the first time. The resultant ordered mesostructured carbon material outperforms carbons obtained by conventional hard templating with respect to high specific micro- and mesopore volumes (0.6 and 1.6 cm(3) g(-1) , respectively), due to the presence of a hierarchical pore system. A high specific surface area of 1671 m(2) g(-1) was achieved, rendering this synthesis route a highly convenient method to produce ordered mesoporous carbons.

15.
Langmuir ; 31(13): 4040-7, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25773383

RESUMO

Thermal response measurements based on optical adsorption calorimetry are presented as a versatile tool for the time-saving and profound characterization of the pore structure of porous carbon-based materials. This technique measures the time-resolved temperature change of an adsorbent during adsorption of a test gas. Six carbide and carbon materials with well-defined nanopore architecture including micro- and/or mesopores are characterized by thermal response measurements based on n-butane and carbon dioxide as the test gases. With this tool, the pore systems of the model materials can be clearly distinguished and accurately analyzed. The obtained calorimetric data are correlated with the adsorption/desorption isotherms of the materials. The pore structures can be estimated from a single experiment due to different adsorption enthalpies/temperature increases in micro- and mesopores. Adsorption/desorption cycling of n-butane at 298 K/1 bar with increasing desorption time allows to determine the pore structure of the materials in more detail due to different equilibration times. Adsorption of the organic test gas at selected relative pressures reveals specific contributions of particular pore systems to the increase of the temperature of the samples and different adsorption mechanisms. The use of carbon dioxide as the test gas at 298 K/1 bar provides detailed insights into the ultramicropore structure of the materials because under these conditions the adsorption of this test gas is very sensitive to the presence of pores smaller than 0.7 nm.

16.
ChemSusChem ; 17(4): e202301300, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-37847475

RESUMO

In this work, we report on an improved cell assembly of cylindrical electrochemical cells for 23 Na in-situ solid-state NMR (ssNMR) investigations. The cell set-up is suitable for using powder electrode materials. Reproducibility of our cell assembly is analyzed by preparing two cells containing hard carbon (HC) powder as working electrode and sodium metal as reference electrode. Electrochemical storage properties of HC powder electrode derived from carbonization of sustainable cellulose are studied by ssNMR. 23 Na in-situ ssNMR monitors the sodiation/desodiation of a Na|NaPF6 |HC cell (cell 1) over a period of 22 days, showing high cell stability. After the galvanostatic process, the HC powder material is investigated by high resolution 23 Na ex-situ MAS NMR. The formation of ionic sodium species in different chemical environments is obtained. Subsequently, a second Na|NaPF6 |HC cell (cell 2) is sodiated for 11 days achieving a capacity of 220 mAh/g. 23 Na ex-situ MAS NMR measurements of the HC powder material extracted from this cell clearly indicate the presence of quasi-metallic sodium species next to ionic sodium species. This observation of quasi-metallic sodium species is discussed in terms of the achieved capacity of the cell as well as of side reactions of sodium in this electrode material.

17.
Adv Mater ; 36(18): e2310056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252812

RESUMO

In this work, the properties of a novel electrolyte based on the combination of bio-based Æ´-valerolactone (GVL) solvent with lithium bis(oxalato)borate (LiBOB) salt and its use for lithium-ion capacitors (LICs) are presented. It is shown that the 1 m LiBOB in GVL electrolyte displays good transport properties, high thermal stability, and the ability to prevent anodic dissolution. Its impact on the performance of both battery-type and capacitive-type electrodes is evaluated. In this regard, special attention is paid to the filming properties associated with LiBOB and GVL decomposition at the electrode surfaces. To the best of the authors' knowledge, the full-cell devices assembled in this study are the first example of a fluorine-free LIC. These devices exhibit a favorable energy-to-power ratio, delivering 80 Wh kg-1 AM at 10 000 W kg-1 AM along with excellent cycling stability, retaining 80% of the initial capacitance after 25 000 cycles. Furthermore, post-mortem analysis of the LIC electrodes is conducted to gain deeper insights into the degradation mechanisms within the device.

18.
Langmuir ; 29(25): 8133-9, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23701426

RESUMO

Porous carbon and carbide materials with different structures were characterized using adsorption of nitrogen at 77.4 K before and after preadsorption of n-nonane. The selective blocking of the microporosity with n-nonane shows that ordered mesoporous silicon carbide material (OM-SiC) is almost exclusively mesoporous whereas the ordered mesoporous carbon CMK-3 contains a significant amount of micropores (~25%). The insertion of micropores into OM-SiC using selective extraction of silicon by hot chlorine gas leads to the formation of ordered mesoporous carbide-derived carbon (OM-CDC) with a hierarchical pore structure and significantly higher micropore volume as compared to CMK-3, whereas a CDC material from a nonporous precursor is exclusively microporous. Volumes of narrow micropores, calculated by adsorption of carbon dioxide at 273 K, are in linear correlation with the volumes blocked by n-nonane. Argon adsorption measurements at 87.3 K allow for precise and reliable calculation of the pore size distribution of the materials using density functional theory (DFT) methods.

19.
Phys Chem Chem Phys ; 15(36): 15177-84, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23925570

RESUMO

Electrochemical double-layer capacitors (EDLCs or supercapacitors) are of special potential interest with respect to energy storage. Nearly all EDLCs make use of porous carbons as electrode materials. Further tuning of their performance in EDLC applications requires a better understanding of their properties. In particular, the understanding of the interactions between carbon-based materials and electrolyte solutions is of fundamental interest with respect to future applications. Since the capacitance of carbon-based electrode materials is known to depend on the pore size, we have studied different porous carbon materials of well-defined, variable pore size loaded with 1 M TEABF4 in acetonitrile or with pure acetonitrile using solid-state magic angle spinning (MAS) (1)H, (11)B, and (13)C NMR spectroscopy.


Assuntos
Carbono/química , Técnicas Eletroquímicas , Eletrólitos/química , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Porosidade , Propriedades de Superfície
20.
Chem Soc Rev ; 41(15): 5053-67, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22344324

RESUMO

A tutorial review on cellular as well as nanoporous carbides covering their structure, synthesis and potential applications. Especially new carbide materials with a hierarchical pore structure are in focus. As a central theme silicon carbide based materials are picked out, but also titanium, tungsten and boron carbides, as well as carbide-derived carbons, are part of this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA