Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Allergy Clin Immunol ; 152(3): 711-724.e14, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37100120

RESUMO

BACKGROUND: Mast cell activation is critical for the development of allergic diseases. Ligation of sialic acid-binding immunoglobin-like lectins (Siglecs), such as Siglec-6, -7, and -8 as well as CD33, have been shown to inhibit mast cell activation. Recent studies showed that human mast cells express Siglec-9, an inhibitory receptor also expressed by neutrophils, monocytes, macrophages, and dendritic cells. OBJECTIVE: We aimed to characterize Siglec-9 expression and function in human mast cells in vitro. METHODS: We assessed the expression of Siglec-9 and Siglec-9 ligands on human mast cell lines and human primary mast cells by real-time quantitative PCR, flow cytometry, and confocal microscopy. We used a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing approach to disrupt the SIGLEC9 gene. We evaluated Siglec-9 inhibitory activity on mast cell function by using native Siglec-9 ligands, glycophorin A (GlycA), and high-molecular-weight hyaluronic acid, a monoclonal antibody against Siglec-9, and coengagement of Siglec-9 with the high-affinity receptor for IgE (FcεRI). RESULTS: Human mast cells express Siglec-9 and Siglec-9 ligands. SIGLEC9 gene disruption resulted in increased expression of activation markers at baseline and increased responsiveness to IgE-dependent and IgE-independent stimulation. Pretreatment with GlycA or high-molecular-weight hyaluronic acid followed by IgE-dependent or -independent stimulation had an inhibitory effect on mast cell degranulation. Coengagement of Siglec-9 with FcεRI in human mast cells resulted in reduced degranulation, arachidonic acid production, and chemokine release. CONCLUSIONS: Siglec-9 and its ligands play an important role in limiting human mast cell activation in vitro.


Assuntos
Ácido Hialurônico , Mastócitos , Humanos , Ligantes , Ácido Hialurônico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Imunoglobulina E/metabolismo
2.
BMC Genomics ; 24(1): 592, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37798647

RESUMO

BACKGROUND: Antigenic stimulation through cross-linking the IgE receptor and epithelial cell-derived cytokine IL-33 are potent stimuli of mast cell (MC) activation. Moreover, IL-33 primes a variety of cell types, including MCs to respond more vigorously to external stimuli. However, target genes induced by the combined IL-33 priming and antigenic stimulation have not been investigated in human skin mast cells (HSMCs) in a genome-wide manner. Furthermore, epigenetic changes induced by the combined IL-33 priming and antigenic stimulation have not been evaluated. RESULTS: We found that IL-33 priming of HSMCs enhanced their capacity to promote transcriptional synergy of the IL1B and CXCL8 genes by 16- and 3-fold, respectively, in response to combined IL-33 and antigen stimulation compared to without IL-33 priming. We identified the target genes in IL-33-primed HSMCs in response to the combined IL-33 and antigenic stimulation using RNA sequencing (RNA-seq). We found that the majority of genes synergistically upregulated in the IL-33-primed HSMCs in response to the combined IL-33 and antigenic stimulation were predominantly proinflammatory cytokine and chemokine genes. Moreover, the combined IL-33 priming and antigenic stimulation increase chromatin accessibility in the synergy target genes but not synergistically. Transcription factor binding motif analysis revealed more binding sites for NF-κB, AP-1, GABPA, and RAP1 in the induced or increased chromatin accessible regions of the synergy target genes. CONCLUSIONS: Our study demonstrates that IL-33 priming greatly potentiates MCs' ability to transcribe proinflammatory cytokine and chemokine genes in response to antigenic stimulation, shining light on how epithelial cell-derived cytokine IL-33 can cause exacerbation of skin MC-mediated allergic inflammation.


Assuntos
Citocinas , Mastócitos , Humanos , Citocinas/genética , Citocinas/metabolismo , Mastócitos/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Quimiocinas/genética , Cromatina/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047680

RESUMO

Inflammation is pathogenic to skin diseases, including atopic dermatitis (AD) and eczema. Treatment for AD remains mostly symptomatic with newer but costly options, tainted with adverse side effects. There is an unmet need for safe therapeutic and preventative strategies for AD. Resveratrol (R) is a natural compound known for its anti-inflammatory properties. However, animal and human R studies have yielded contrasting results. Mast cells (MCs) are innate immune skin-resident cells that initiate the development of inflammation and progression to overt disease. R's effects on MCs are also controversial. Using a human-like mouse model of AD development consisting of a single topical application of antigen ovalbumin (O) for 7 days, we previously established that the activation of MCs by a bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) initiated substantial skin remodeling compared to controls. Here, we show that daily R application normalized O-mediated epidermal thickening, ameliorated cell infiltration, and inhibited skin MC activation and chemokine expression. We unraveled R's multiple mechanisms of action, including decreased activation of the S1P-producing enzyme, sphingosine kinase 1 (SphK1), and of transcription factors Signal Transducer and Activator of Transcription 3 (Stat3) and NF-κBp65, involved in chemokine production. Thus, R may be poised for protection against MC-driven pathogenic skin inflammation.


Assuntos
Dermatite Atópica , NF-kappa B , Animais , Humanos , Camundongos , Quimiocinas/metabolismo , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mastócitos/metabolismo , NF-kappa B/metabolismo , Resveratrol/uso terapêutico , Esfingosina , Fator de Transcrição STAT3/metabolismo
4.
Cell Immunol ; 368: 104422, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34399172

RESUMO

MAS related G-protein coupled receptor X2 (MRGPRX2) is a G-protein coupled receptor (GPCR) expressed in human mast cells that has been implicated to play an important role in causing pseudo-allergic reactions as well as exacerbating inflammation during asthma and other allergic diseases. Lactic acid, a byproduct of glucose metabolism, is abundantly present in inflamed tissues and has been shown to regulate functions of several immune cells. Because the endogenous ligands for MRGPRX2 (substance P and LL-37) are elevated during pathologic conditions, such as cancer and asthma, and given that lactic acid levels are also enhanced in these patients, we explored the role of lactic acid in regulating mast cells response via MRGPRX2 and MrgprB2, the mouse orthologue of the human receptor. We found that lactic acid suppressed both the early (Ca2+ mobilization and degranulation) and late (chemokine/cytokine release) phases of mast cell activation; this data was confirmed in LAD2, human skin and mouse peritoneal mast cells. In LAD2 cells, the reduction in degranulation and chemokine/cytokine production mediated by lactic acid was dependent on pH. In agreement with our in vitro studies, lactic acid also reduced passive systemic anaphylaxis to compound 48/80 (a known MRGPRX2/MrgprB2 ligand) and skin inflammation in a mouse model of rosacea that is dependent on MrgprB2 expression on skin mast cells. Our data thus suggest that lactic acid may serve to inhibit mast cell-mediated inflammation during asthma and reduce immune response during cancer by affecting mast cell activation through MRGPRX2.


Assuntos
Hipersensibilidade/imunologia , Inflamação/imunologia , Ácido Láctico/metabolismo , Mastócitos/imunologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Rosácea/imunologia , Animais , Sinalização do Cálcio , Degranulação Celular , Glucose/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
5.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360617

RESUMO

Atopic dermatitis (AD or eczema) is the most common chronic inflammatory skin disorder worldwide. Ceramides (Cer) maintain skin barrier functions, which are disrupted in lesional skin of AD patients. However, Cer status during the pre-lesional phase of AD is not well defined. Using a variation of human AD-like preclinical model consisting of a 7-day topical exposure to ovalbumin (OVA), or control, we observed elevation of Cer C16 and C24. Skin mRNA quantification of enzymes involved in Cer metabolism [Cer synthases (CerS) and ceramidases (Asah1/Asah2)], which revealed augmented CerS 4, 5 and 6 and Asah1. Given the overall pro-apoptotic nature of Cer, local apoptosis was assessed, then quantified using novel morphometric measurements of cleaved caspase (Casp)-3-restricted immunofluorescence signal in skin samples. Apoptosis was induced in response to OVA. Because apoptosis may occur downstream of endoplasmic reticulum (ER) stress, we measured markers of ER stress-induced apoptosis and found elevated skin-associated CHOP protein upon OVA treatment. We previously substantiated the importance of mast cells (MC) in initiating early skin inflammation. OVA-induced Cer increase and local apoptosis were prevented in MC-deficient mice; however, they were restored following MC reconstitution. We propose that the MC/Cer axis is an essential pathogenic feature of pre-lesional AD, whose targeting may prevent disease development.


Assuntos
Apoptose , Ceramidas/metabolismo , Dermatite Atópica/patologia , Eczema/patologia , Mastócitos/patologia , Pele/patologia , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Eczema/induzido quimicamente , Eczema/tratamento farmacológico , Eczema/metabolismo , Feminino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/toxicidade , Pele/efeitos dos fármacos , Pele/metabolismo
6.
Cell Immunol ; 341: 103918, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31030957

RESUMO

Mast cells have functional plasticity affected by their tissue microenvironment, which greatly impacts their inflammatory responses. Because lactic acid (LA) is abundant in inflamed tissues and tumors, we investigated how it affects mast cell function. Using IgE-mediated activation as a model system, we found that LA suppressed inflammatory cytokine production and degranulation in mouse peritoneal mast cells, data that were confirmed with human skin mast cells. In mouse peritoneal mast cells, LA-mediated cytokine suppression was dependent on pH- and monocarboxylic transporter-1 expression. Additionally, LA reduced IgE-induced Syk, Btk, and ERK phosphorylation, key signals eliciting inflammation. In vivo, LA injection reduced IgE-mediated hypothermia in mice undergoing passive systemic anaphylaxis. Our data suggest that LA may serve as a feedback inhibitor that limits mast cell-mediated inflammation.


Assuntos
Anafilaxia/prevenção & controle , Anti-Inflamatórios não Esteroides/farmacologia , Retroalimentação Fisiológica , Imunoglobulina E/genética , Ácido Láctico/farmacologia , Mastócitos/efeitos dos fármacos , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/imunologia , Anafilaxia/induzido quimicamente , Anafilaxia/imunologia , Anafilaxia/patologia , Animais , Dinitrofenóis/administração & dosagem , Dinitrofenóis/antagonistas & inibidores , Feminino , Regulação da Expressão Gênica , Cetoprofeno/farmacologia , Ácido Láctico/imunologia , Ácido Láctico/metabolismo , Mastócitos/imunologia , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/imunologia , Cavidade Peritoneal/patologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Albumina Sérica/administração & dosagem , Albumina Sérica/antagonistas & inibidores , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Quinase Syk/genética , Quinase Syk/imunologia , Simportadores/genética , Simportadores/imunologia
8.
J Immunol ; 199(3): 866-873, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637902

RESUMO

TGF-ß1 is involved in many pathological conditions, including autoimmune disorders, cancer, and cardiovascular and allergic diseases. We have previously found that TGF-ß1 can suppress IgE-mediated mast cell activation of human and mouse mast cells. IL-33 is a member of the IL-1 family capable of inducing mast cell responses and enhancing IgE-mediated activation. In this study, we investigated the effects of TGF-ß on IL-33-mediated mast cell activation. Bone marrow-derived mast cells cultured in TGF-ß1, ß2, or ß3 showed reduced IL-33-mediated production of TNF, IL-6, IL-13, and MCP-1 in a concentration-dependent manner. TGF-ß1 inhibited IL-33-mediated Akt and ERK phosphorylation as well as NF-κB- and AP-1-mediated transcription. These effects were functionally important, as TGF-ß1 injection suppressed IL-33-induced systemic cytokines in vivo and inhibited IL-33-mediated cytokine release from human mast cells. TGF-ß1 also suppressed the combined effects of IL-33 and IgE-mediated activation on mouse and human mast cells. The role of IL-33 in the pathogenesis of allergic diseases is incompletely understood. These findings, consistent with our previously reported effects of TGF-ß1 on IgE-mediated activation, demonstrate that TGF-ß1 can provide broad inhibitory signals to activated mast cells.


Assuntos
Interleucina-33/imunologia , Mastócitos/imunologia , Fator de Crescimento Transformador beta1/fisiologia , Animais , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Citocinas/imunologia , Humanos , Imunoglobulina E/imunologia , Interleucina-6/biossíntese , Interleucina-6/imunologia , Ativação Linfocitária/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , NF-kappa B/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de IgE/imunologia , Fator de Transcrição AP-1/genética , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta3/farmacologia
9.
J Immunol ; 197(7): 2909-17, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559047

RESUMO

Lactic acid (LA) is present in tumors, asthma, and wound healing, environments with elevated IL-33 and mast cell infiltration. Although IL-33 is a potent mast cell activator, how LA affects IL-33-mediated mast cell function is unknown. To investigate this, mouse bone marrow-derived mast cells were cultured with or without LA and activated with IL-33. LA reduced IL-33-mediated cytokine and chemokine production. Using inhibitors for monocarboxylate transporters (MCT) or replacing LA with sodium lactate revealed that LA effects are MCT-1- and pH-dependent. LA selectively altered IL-33 signaling, suppressing TGF-ß-activated kinase-1, JNK, ERK, and NF-κB phosphorylation, but not p38 phosphorylation. LA effects in other contexts have been linked to hypoxia-inducible factor (HIF)-1α, which was enhanced in bone marrow-derived mast cells treated with LA. Because HIF-1α has been shown to regulate the microRNA miR-155 in other systems, LA effects on miR-155-5p and miR-155-3p species were measured. In fact, LA selectively suppressed miR-155-5p in an HIF-1α-dependent manner. Moreover, overexpressing miR-155-5p, but not miR-155-3p, abolished LA effects on IL-33-induced cytokine production. These in vitro effects of reducing cytokines were consistent in vivo, because LA injected i.p. into C57BL/6 mice suppressed IL-33-induced plasma cytokine levels. Lastly, IL-33 effects on primary human mast cells were suppressed by LA in an MCT-dependent manner. Our data demonstrate that LA, present in inflammatory and malignant microenvironments, can alter mast cell behavior to suppress inflammation.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/prevenção & controle , Interleucina-33/imunologia , Ácido Láctico/farmacologia , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , MicroRNAs/genética , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Humanos , Inflamação/imunologia , Masculino , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , Relação Estrutura-Atividade
10.
J Immunol ; 196(11): 4457-67, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183599

RESUMO

IL-10 is an important regulatory cytokine that modulates a wide range of immune cells. Whereas it is best known for its ability to suppress immune responses, IL-10 has been found to be pathogenic in several human and animal studies of immune-mediated diseases. There is a considerable gap in our understanding of the molecular mechanisms behind the stimulatory effects of IL-10 during allergic inflammation. IL-10 treatment has been shown to suppress mast cell TNF production. In this study, we report that whereas TNF secretion was reduced, IL-10 surprisingly enhanced IgE-mediated protease and cytokine production both in vitro and in vivo. This stimulatory effect was consistent in mouse and human skin mast cells. IL-10 enhanced activation of the key FcεRI signaling proteins Stat5, JNK, and ERK. We demonstrate that IL-10 effects are dependent on Stat3 activation, eliciting miR-155 expression, with a resulting loss of suppressor of cytokine signaling-1. The importance of miR-155 was demonstrated by the inability of IL-10 to enhance anaphylaxis in miR-155-deficient mice. Taken together, our results reveal an IL-10-induced, Stat3-miR-155 signaling pathway that can promote mast cell responses.


Assuntos
Imunoglobulina E/imunologia , Interleucina-10/imunologia , Mastócitos/imunologia , MicroRNAs/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Animais , Células Cultivadas , Mastócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/imunologia
11.
J Immunol ; 196(4): 1461-70, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773154

RESUMO

Mast cell (MC)- and basophil-associated inflammatory diseases are a considerable burden to society. A significant portion of patients have symptoms despite standard-of-care therapy. Statins, used to lower serum cholesterol, have immune-modulating activities. We tested the in vitro and in vivo effects of statins on IgE-mediated MC and basophil activation. Fluvastatin showed the most significant inhibitory effects of the six statins tested, suppressing IgE-induced cytokine secretion among mouse MCs and basophils. The effects of fluvastatin were reversed by mevalonic acid or geranylgeranyl pyrophosphatase, and mimicked by geranylgeranyl transferase inhibition. Fluvastatin selectively suppressed key FcεRI signaling pathways, including Akt and ERK. Although MCs and basophils from the C57BL/6J mouse strain were responsive to fluvastatin, those from 129/SvImJ mice were completely resistant. Resistance correlated with fluvastatin-induced upregulation of the statin target HMG-CoA reductase. Human MC cultures from eight donors showed a wide range of fluvastatin responsiveness. These data demonstrate that fluvastatin is a potent suppressor of IgE-mediated MC activation, acting at least partly via blockade of geranyl lipid production downstream of HMG-CoA reductase. Importantly, consideration of statin use for treating MC-associated disease needs to incorporate genetic background effects, which can yield drug resistance.


Assuntos
Basófilos/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Imunoglobulina E/biossíntese , Indóis/farmacologia , Mastócitos/efeitos dos fármacos , Acil Coenzima A/genética , Acil Coenzima A/imunologia , Animais , Apoptose , Basófilos/imunologia , Células Cultivadas , Citocinas/biossíntese , Farnesiltranstransferase/metabolismo , Feminino , Fluvastatina , Genótipo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Ácido Mevalônico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Células Th2/imunologia
12.
Mediators Inflamm ; 2016: 1503206, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26884643

RESUMO

Mast cells (MC) are present in most vascularized tissues around the vasculature likely exerting immunomodulatory functions. Endowed with diverse mediators, resident MC represent first-line fine-tuners of local microenvironment. Sphingosine-1-phosphate (S1P) functions as a pluripotent signaling sphingolipid metabolite in health and disease. S1P formation occurs at low levels in resting MC and is upregulated upon activation. Its export can result in type 2 S1P receptor- (S1PR2-) mediated stimulation of MC, further fueling inflammation. However, the role of S1PR2 ligation in proangiogenic vascular endothelial growth factor- (VEGF-) A and matrix metalloproteinase- (MMP-) 2 release from MC is unknown. Using a preclinical MC-dependent model of acute allergic responses and in vitro stimulated primary mouse bone marrow-derived MC (BMMC) or human primary skin MC, we report that S1P signaling resulted in substantial amount of VEGF-A release. Similar experiments using S1pr2-deficient mice or BMMC or selective S1P receptor agonists or antagonists demonstrated that S1P/S1PR2 ligation on MC is important for VEGF-A secretion. Further, we show that S1P stimulation triggered transcriptional upregulation of VEGF-A and MMP-2 mRNA in human but not in mouse MC. S1P exposure also triggered MMP-2 secretion from human MC. These studies identify a novel proangiogenic axis encompassing MC/S1P/S1PR2 likely relevant to inflammation.


Assuntos
Lisofosfolipídeos/farmacologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato
13.
J Allergy Clin Immunol ; 135(4): 1008-1018.e1, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25512083

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced by mast cells (MCs) on cross-linking of their high-affinity receptors for IgE by antigen that can amplify MC responses by binding to its S1P receptors. An acute MC-dependent allergic reaction can lead to systemic shock, but the early events of its development in lung tissues have not been investigated, and S1P functions in the onset of allergic processes remain to be examined. OBJECTIVE: We used a highly specific neutralizing anti-S1P antibody (mAb) and the sphingosine-1-phosphate receptor 2 (S1PR2) antagonist JTE-013 to study the signaling contributions of S1P and S1PR2 to MC- and IgE-dependent airway allergic responses in mice within minutes after antigen challenge. METHODS: Allergic reaction was triggered by a single intraperitoneal dose of antigen in sensitized mice pretreated intraperitoneally with anti-S1P, isotype control mAb, JTE-013, or vehicle before antigen challenge. RESULTS: Kinetics experiments revealed early pulmonary infiltration of mostly T cells around blood vessels of sensitized mice 20 minutes after antigen exposure. Pretreatment with anti-S1P mAb inhibited in vitro MC activation, as well as in vivo development of airway infiltration and MC activation, reducing serum levels of histamine, cytokines, and the chemokines monocyte chemoattractant protein 1/CCL2, macrophage inflammatory protein 1α/CCL3, and RANTES/CCL5. S1PR2 antagonism or deficiency or MC deficiency recapitulated these results. Both in vitro and in vivo experiments demonstrated MC S1PR2 dependency for chemokine release and the necessity for signal transducer and activator of transcription 3 activation. CONCLUSION: Activation of S1PR2 by S1P and downstream signal transducer and activator of transcription 3 signaling in MCs regulate early T-cell recruitment to antigen-challenged lungs through chemokine production.


Assuntos
Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Lisofosfolipídeos/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transferência Adotiva , Animais , Antígenos/imunologia , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Lisofosfolipídeos/antagonistas & inibidores , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Esfingosina/antagonistas & inibidores , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
14.
J Immunol ; 191(9): 4505-13, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24068671

RESUMO

We previously demonstrated that TGF-ß1 suppresses IgE-mediated signaling in human and mouse mast cells in vitro, an effect that correlated with decreased expression of the high-affinity IgE receptor, FcεRI. The in vivo effects of TGF-ß1 and the means by which it suppresses mast cells have been less clear. This study shows that TGF-ß1 suppresses FcεRI and c-Kit expression in vivo. By examining changes in cytokine production concurrent with FcεRI expression, we found that TGF-ß1 suppresses TNF production independent of FcεRI levels. Rather, IgE-mediated signaling was altered. TGF-ß1 significantly reduced expression of Fyn and Stat5, proteins critical for cytokine induction. These changes may partly explain the effects of TGF-ß1, because Stat5B overexpression blocked TGF-mediated suppression of IgE-induced cytokine production. We also found that Stat5B is required for mast cell migration toward stem cell factor, and that TGF-ß1 reduced this migration. We found evidence that genetic background may alter TGF responses. TGF-ß1 greatly reduced mast cell numbers in Th1-prone C57BL/6, but not Th2-prone 129/Sv mice. Furthermore, TGF-ß1 did not suppress IgE-induced cytokine release and did increase c-Kit-mediated migration in 129/Sv mast cells. These data correlated with high basal Fyn and Stat5 expression in 129/Sv cells, which was not reduced by TGF-ß1 treatment. Finally, primary human mast cell populations also showed variable sensitivity to TGF-ß1-mediated changes in Stat5 and IgE-mediated IL-6 secretion. We propose that TGF-ß1 regulates mast cell homeostasis, and that this feedback suppression may be dependent on genetic context, predisposing some individuals to atopic disease.


Assuntos
Imunoglobulina E/imunologia , Mastócitos/metabolismo , Receptores de IgE/imunologia , Fator de Transcrição STAT5/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Movimento Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Imunoglobulina E/metabolismo , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Receptores de IgE/biossíntese , Receptores de IgE/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/imunologia , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta1/imunologia , Fatores de Necrose Tumoral/biossíntese
15.
Microsc Microanal ; 21(6): 1573-1581, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26492872

RESUMO

Apart from their effector functions in allergic disorders, tissue-resident mast cells (MC) are gaining recognition as initiators of inflammatory events through their distinctive ability to secrete many bioactive molecules harbored in cytoplasmic granules. Activation triggers mediator release through a regulated exocytosis named degranulation. MC activation is still substantiated by measuring systemic levels of MC-restricted mediators. However, identifying the anatomical location of MC activation is valuable for disease diagnosis. We designed a computer-assisted morphometric method based on image analysis of methylene blue (MB)-stained normal mouse skin tissue sections that quantitates actual in situ MC activation status. We reasoned MC cytoplasm could be viewed as an object featuring unique relative mass values based on activation status. Integrated optical density and area (A) ratios were significantly different between intact and degranulated MC (p<0.001). The examination of fractal characteristics is of translational diagnostic/prognostic value in cancer and readily applied to quantify cytoskeleton morphology and vasculature. Fractal dimension (D), a measure of their comparative space filling capacity and structural density, also differed significantly between intact and degranulated MC (p<0.001). Morphometric analysis provides a reliable and reproducible method for in situ quantification of MC activation status.

16.
J Immunol ; 188(9): 4360-8, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22450804

RESUMO

Anaphylaxis is a rapid, life-threatening hypersensitivity reaction. Until recently, it was mainly attributed to histamine released by mast cells activated by allergen crosslinking (XL) of FcεRI-bound allergen-specific IgE. However, recent reports established that anaphylaxis could also be triggered by basophil, macrophage, and neutrophil secretion of platelet-activating factor subsequent to FcγR stimulation by IgG/Ag complexes. We have investigated the contribution of Fyn and Lyn tyrosine kinases to FcγRIIb and FcγRIII signaling in the context of IgG-mediated passive systemic anaphylaxis (PSA). We found that mast cell IgG XL induced Fyn, Lyn, Akt, Erk, p38, and JNK phosphorylation. Additionally, IgG XL of mast cells, basophils, and macrophages resulted in Fyn- and Lyn-regulated mediator release in vitro. FcγR-mediated activation was enhanced in Lyn-deficient (knockout [KO]) cells, but decreased in Fyn KO cells, compared with wild-type cells. More importantly, Lyn KO mice displayed significantly exacerbated PSA features whereas no change was observed for Fyn KO mice, compared with wild-type littermates. Intriguingly, we establish that mast cells account for most serum histamine in IgG-induced PSA. Taken together, our findings establish pivotal roles for Fyn and Lyn in the regulation of PSA and highlight their unsuspected functions in IgG-mediated pathologies.


Assuntos
Anafilaxia/imunologia , Imunoglobulina G/imunologia , Mastócitos/imunologia , Proteínas Proto-Oncogênicas c-fyn/imunologia , Quinases da Família src/imunologia , Alérgenos/genética , Alérgenos/imunologia , Anafilaxia/genética , Anafilaxia/patologia , Animais , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Imunoglobulina G/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/imunologia , Mastócitos/patologia , Camundongos , Camundongos Knockout , Fosforilação/genética , Fosforilação/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-fyn/genética , Receptores de IgG/genética , Receptores de IgG/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Quinases da Família src/genética
17.
J Allergy Clin Immunol ; 131(2): 501-11.e1, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22939756

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P), which is produced by 2 sphingosine kinase (SphK) isoenzymes, SphK1 and SphK2, has been implicated in IgE-mediated mast cell responses. However, studies of allergic inflammation in isotype-specific SphK knockout mice have not clarified their contribution, and the role that S1P plays in vivo in a mast cell- and IgE-dependent murine model of allergic asthma has not yet been examined. OBJECTIVE: We used an isoenzyme-specific SphK1 inhibitor, SK1-I, to investigate the contributions of S1P and SphK1 to mast cell-dependent airway hyperresponsiveness (AHR) and airway inflammation in mice. METHODS: Allergic airway inflammation and AHR were examined in a mast cell-dependent murine model of ovalbumin (OVA)-induced asthma. C57BL/6 mice received intranasal delivery of SK1-I before sensitization and challenge with OVA or only before challenge. RESULTS: SK1-I inhibited antigen-dependent activation of human and murine mast cells and suppressed activation of nuclear factor κB (NF-κB), a master transcription factor that regulates the expression of proinflammatory cytokines. SK1-I treatment of mice sensitized to OVA in the absence of adjuvant, in which mast cell-dependent allergic inflammation develops, significantly reduced OVA-induced AHR to methacholine; decreased numbers of eosinophils and levels of the cytokines IL-4, IL-5, IL-6, IL-13, IFN-γ, and TNF-α and the chemokines eotaxin and CCL2 in bronchoalveolar lavage fluid; and decreased pulmonary inflammation, as well as activation of NF-κB in the lungs. CONCLUSION: S1P and SphK1 play important roles in mast cell-dependent, OVA-induced allergic inflammation and AHR, in part by regulating the NF-κB pathway.


Assuntos
Amino Álcoois/farmacologia , Asma/tratamento farmacológico , Hiper-Reatividade Brônquica/tratamento farmacológico , Inflamação/tratamento farmacológico , Mastócitos/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Animais , Asma/induzido quimicamente , Asma/enzimologia , Asma/metabolismo , Hiper-Reatividade Brônquica/enzimologia , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/patologia , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Quimiocina CCL2/metabolismo , Feminino , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Humanos , Hiperplasia/tratamento farmacológico , Hiperplasia/metabolismo , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucinas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lisofosfolipídeos/metabolismo , Mastócitos/metabolismo , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Ovalbumina/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Sci Signal ; 16(802): eabc9089, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699080

RESUMO

There is a clinical need for new treatment options addressing allergic disease. Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants that have anti-inflammatory properties. We tested the effects of the SSRI fluoxetine on IgE-induced function of mast cells, which are critical effectors of allergic inflammation. We showed that fluoxetine treatment of murine or human mast cells reduced IgE-mediated degranulation, cytokine production, and inflammatory lipid secretion, as well as signaling mediated by the mast cell activator ATP. In a mouse model of systemic anaphylaxis, fluoxetine reduced hypothermia and cytokine production. Fluoxetine was also effective in a model of allergic airway inflammation, where it reduced bronchial responsiveness and inflammation. These data show that fluoxetine suppresses mast cell activation by impeding an FcɛRI-ATP positive feedback loop and support the potential repurposing of this SSRI for use in allergic disease.


Assuntos
Fluoxetina , Mastócitos , Humanos , Animais , Camundongos , Fluoxetina/farmacologia , Retroalimentação , Inflamação/tratamento farmacológico , Citocinas , Trifosfato de Adenosina , Imunoglobulina E
19.
J Immunol ; 184(9): 4688-95, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20304823

RESUMO

Mast cell responses can be altered by cytokines, including those secreted by Th2 and regulatory T cells (Treg). Given the important role of mast cells in Th2-mediated inflammation and recent demonstrations of Treg-mast cell interactions, we examined the ability of IL-4 and TGF-beta1 to regulate mast cell homeostasis. Using in vitro and in vivo studies of mouse and human mast cells, we demonstrate that IL-4 suppresses TGF-beta1 receptor expression and signaling, and vice versa. In vitro studies demonstrated that IL-4 and TGF-beta1 had balancing effects on mast cell survival, migration, and FcepsilonRI expression, with each cytokine cancelling the effects of the other. However, in vivo analysis of peritoneal inflammation during Nippostrongylus brasiliensis infection in mice revealed a dominant suppressive function for TGF-beta1. These data support the existence of a cytokine network involving the Th2 cytokine IL-4 and the Treg cytokine TGF-beta1 that can regulate mast cell homeostasis. Dysregulation of this balance may impact allergic disease and be amenable to targeted therapy.


Assuntos
Homeostase/imunologia , Interleucina-4/fisiologia , Mastócitos/imunologia , Mastócitos/metabolismo , Fator de Crescimento Transformador beta1/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/fisiologia , Receptores de Interleucina-4/antagonistas & inibidores , Receptores de Interleucina-4/biossíntese , Receptores de Interleucina-4/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Técnicas de Cultura de Tecidos , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/biossíntese
20.
Front Immunol ; 13: 1033794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275683

RESUMO

Mas-related G protein-coupled receptor-X2 (MRGPRX2) expressed on mast cells (MCs) contributes to hypersensitivity reactions to cationic US-Food and Drug Administration (FDA) approved drugs such as the neuromuscular blocking agent, rocuronium. In addition, activation of MRGPRX2 by the neuropeptide substance P (SP) and the pro-adrenomedullin peptide (PAMP-12) is associated with a variety of cutaneous conditions such as neurogenic inflammation, pain, atopic dermatitis, urticaria, and itch. Thus, small molecules aimed at blocking MRGPRX2 constitute potential options for modulating IgE-independent MC-mediated disorders. Two inverse MRGPRX2 agonists, named C9 and C9-6, have recently been identified, which inhibit basal G protein activation and agonist-induced calcium mobilization in transfected HEK293 cells. Substance P serves as a balanced agonist for MRGPRX2 whereby it activates both G protein-mediated degranulation and ß-arrestin-mediated receptor internalization. The purpose of this study was to determine if C9 blocks MRGPRX2's G protein and ß-arrestin-mediated signaling and to determine its specificity. We found that C9, but not its inactive analog C7, inhibited degranulation in RBL-2H3 cells stably expressing MRGPRX2 in response to SP, PAMP-12 and rocuronium with an IC50 value of ~300 nM. C9 also inhibited degranulation as measured by cell surface expression of CD63, CD107a and ß-hexosaminidase release in LAD2 cells and human skin-derived MCs in response to SP but not the anaphylatoxin, C3a or FcϵRI-aggregation. Furthermore, C9 inhibited ß-arrestin recruitment and MRGPRX2 internalization in response to SP and PAMP-12. We found that a G protein-coupling defective missense MRGPRX2 variant (V282M) displays constitutive activity for ß-arrestin recruitment, and that this response was significantly inhibited by C9. Rocuronium, SP and PAMP-12 caused degranulation in mouse peritoneal MCs and these responses were abolished in the absence of MrgprB2 or cells treated with pertussis toxin but C9 had no effect. These findings suggest that C9 could provide an important framework for developing novel therapeutic approaches for the treatment of IgE-independent MC-mediated drug hypersensitivity and cutaneous disorders.


Assuntos
Hipersensibilidade a Drogas , Neuropeptídeos , Camundongos , Animais , Humanos , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Degranulação Celular , Adrenomedulina/metabolismo , Receptores de IgE/metabolismo , Substância P/farmacologia , Cálcio/metabolismo , Rocurônio , Toxina Pertussis/farmacologia , Células HEK293 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Mastócitos/metabolismo , Neuropeptídeos/metabolismo , Hipersensibilidade a Drogas/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia , Anafilatoxinas/metabolismo , Imunoglobulina E/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA