Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 364: 143132, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39168378

RESUMO

Oily sludge (OS) is a kind of hazardous waste generated from the petrochemical industry. Currently, pyrolysis has been widely applied for OS disposal, while low-oil content (<5 wt%) OS still lacks novel technology to achieve efficient resource utilization and harmful substances immobilization. In this study, a kind of OS-based geopolymer was developed by OS and ground granulated blast furnace slag (GGBS). The results showed that in geopolymer with 30 wt% OS, the content of total petroleum hydrocarbons (TPHs) decreased by 82%, Zn achieved 100% stabilization, and the 28 d compressive strength could still reach 32.8 MPa. The appropriate oil content filled the pores and cracks in geopolymer matrix. The constructed model compounds further elucidated the hydration mechanisms of OS-geopolymer. The nucleation effect of crude oil and micro-aggregate effect of minerals jointly improved the polymerization degree of C-(A)-S-H gels. OS promoted the transformation of [SiO4]4- monomers into C-(A)-S-H unbranched middle groups and three-dimensional networks, thereby efficiently stabilizing harmful substances. Sustainability analysis showed that OS-based geopolymer had good environmental and economic benefits. Overall, this work provides theoretical guidance for the green transformation of OS in the construction field.


Assuntos
Indústria Química , Resíduos Perigosos , Resíduos Industriais , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Indústria de Petróleo e Gás
2.
RSC Adv ; 14(3): 1977-1983, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38196912

RESUMO

In this study, we reported sustainable and economical upcycling methods for utilizing plastics such as polyethylene terephthalate (PET) and polypropylene (PP) compiled from the garbage of a residential area as cheap precursors for the production of high-value carbon materials such as graphene (G), carbon spheres (CS), and carbon nanotubes (CNTs) using different thermal treatment techniques. Graphene, carbon spheres, and carbon nanotubes were successfully synthesized from PET, PP, and PET, respectively via catalytic pyrolysis. XRD and FTIR analyses were conducted on the three materials, confirming the formation of carbon and their graphitic structure. TEM images displayed uniform and consistent morphological structures of the fabricated materials. EDX data confirmed that the prepared carbon-based materials only contained carbon and oxygen without any significant contaminations. XPS results revealed significant peaks in the C 1s spectra associated with sp2 and sp3 hybridized carbon for the three materials. BET spectra showed that the prepared CNTs (54.872 m2 g-1) have the highest surface area followed by carbon spheres (54.807 m2 g-1). The thermal stability of graphene surpassed both carbon spheres and carbon nanotubes which is mainly attributed to the stronger inter-molecular bonds of graphene. Based on the characterization of the prepared materials, these materials are promising to be utilized in environmental remediation applications due to their high carbon content, low cost, and high surface area.

3.
Sci Rep ; 13(1): 2550, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781949

RESUMO

It is crucial to identify more biological adsorbents that can efficiently uptake metals from wastewater. Dry haloalkaliphilic archaea Natronolimnobius innermongolicuswas evaluated for Cd ions biosorption. The optimal operating conditions (pH, biomass dose, initial metal concentration, contact time, and isotherms models) were tested. Biosorption process is influenced by the metal's solution pH with maximum removal of 83.36% being achieved at pH 8. Cadmium ions uptake reaches equilibrium in about 5 min of biosorption process. The Langmuir model was determined to better fit the Cd(II) biosorption by dry archaea. The maximal uptake capacity (qmax) of Cd(II) was 128.21 mg/g. The effect of multi-component system on biosorption behaviour of Pb, Ni, Cu, Fe, and Cd ions by immobilized dried archaeal cells, dried archaeal cells, and dried bryozoa was studied using Plackett-Burman experimental design. The investigated biosorbents were effective at removing metals from contaminated systems, particularly for Fe, Pb, and Cd ions. Moreover, the interaction behaviour of these metals was antagonistic, synergistic, or non-interactive in multi-metals system. SEM, EDX, and FTIR spectra revealed changes in surface morphology of the biomass through the biosorption process. Finally, continuous adsorption experiment was done to examine the ability of immobilized biomass to adsorb metals from wastewater.


Assuntos
Cádmio , Poluentes Químicos da Água , Cádmio/análise , Águas Residuárias , Cinética , Adsorção , Chumbo , Concentração de Íons de Hidrogênio , Biomassa , Íons
4.
RSC Adv ; 12(29): 18363-18372, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35799940

RESUMO

In this study, a cost-effective powdered Zn l-aspartic acid bio-metal organic framework (Zn l-Asp bio-MOF) was reported as an efficient adsorbent for Direct Red 81 (DR-81) as an anionic organic dye. The prepared bio-MOF was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission transmission electron microscopy (FETEM), surface area analysis (BET), and thermal gravimetrical analysis (TGA). The resulting bio-MOF has a large surface area (180.43 m2 g-1) and large mesopore volume (0.144 cm3 g-1), as well as good chemical inertness and mechanical stability. The optimum dosage from the Zn l-Asp bio-MOF was 1.0 g L-1 at pH = 7 for 95.3% adsorption of 10 ppm DR-81 after 45 min. Thermodynamic analysis results demonstrated that the decontamination processes were done with spontaneous, thermodynamically, and exothermic nature onto the fabricated bio-MOF. Kinetic parameters were well-fitted with pseudo-second-order kinetics, and the adsorption process was described by the Freundlich isotherm. The adsorption data proved that Zn l-Asp bio-MOF is an effective adsorbent for DR-81 from aqueous solutions with high stability and recycling ability for eight cycles, as well as the easy regeneration of the sorbent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA