Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299593

RESUMO

The immune system is built to counteract unpredictable threats, yet it relies on predictable cycles of activity to function properly. Daily rhythms in immune function are an expanding area of study, and many originate from a genetically based timekeeping mechanism known as the circadian clock. The challenge is how to harness these biological rhythms to improve medical interventions. Here, we review recent literature documenting how circadian clocks organize fundamental innate and adaptive immune activities, the immunologic consequences of circadian rhythm and sleep disruption, and persisting knowledge gaps in the field. We then consider the evidence linking circadian rhythms to vaccination, an important clinical realization of immune function. Finally, we discuss practical steps to translate circadian immunity to the patient's bedside.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Humanos , Sono , Sistema Imunitário
2.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37053011

RESUMO

BACKGROUNDCircadian rhythms are evident in basic immune processes, but it is unclear if rhythms exist in clinical endpoints like vaccine protection. Here, we examined associations between COVID-19 vaccination timing and effectiveness.METHODSWe retrospectively analyzed a large Israeli cohort with timestamped COVID-19 vaccinations (n = 1,515,754 patients over 12 years old, 99.2% receiving BNT162b2). Endpoints included COVID-19 breakthrough infection and COVID-19-associated emergency department visits and hospitalizations. Our main comparison was among patients vaccinated during morning (800-1159 hours), afternoon (1200-1559 hours), or evening hours (1600-1959 hours). We employed Cox regression to adjust for differences in age, sex, and comorbidities.RESULTSBreakthrough infections differed based on vaccination time, with lowest the rates associated with late morning to early afternoon and highest rates associated with evening vaccination. Vaccination timing remained significant after adjustment for patient age, sex, and comorbidities. Results were consistent in patients who received the basic 2-dose series and who received booster doses. The relationship between COVID-19 immunization time and breakthrough infections was sinusoidal, consistent with a biological rhythm that modifies vaccine effectiveness by 8.6%-25%. The benefits of daytime vaccination were concentrated in younger (<20 years old) and older patients (>50 years old). COVID-19-related hospitalizations varied significantly with the timing of the second booster dose, an intervention reserved for older and immunosuppressed patients (HR = 0.64, morning vs. evening; 95% CI, 0.43-0.97; P = 0.038).CONCLUSIONWe report a significant association between the time of COVID-19 vaccination and its effectiveness. This has implications for mass vaccination programs.FUNDINGNIH.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Criança , Adulto Jovem , Adulto , Pessoa de Meia-Idade , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacina BNT162 , Estudos Retrospectivos , Eficácia de Vacinas , Vacinação , Estudos de Coortes , Periodicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA