Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pineal Res ; 57(1): 1-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24920150

RESUMO

Melatonin is part of the evolutionary conserved highly functional network in vertebrates. It plays a central role in the adaptative behavior of the animal to the environment, including entrainment of daily and annual physiological rhythms, reproductive behavior, food intake, locomotor activity, growth, and breeding performance. In zebrafish, apart from its synchronizing capabilities, melatonin seems to have a major role in multiple physiological processes. Extensive knowledge of its genome and the identification of a series of genes with the same functions as those in humans, the relative ease of obtaining mutants, and the similarities between zebrafish and human pathologies make it an excellent experimental model organism of human diseases. Moreover, it is a common experimental species because of easy handling, breeding, and developmental control. Among other pathophysiologies, zebrafish are now used in studies of neurodegeneration and neurological diseases, endocrine diseases, behavior, muscular dystrophies, developmental alterations, circadian rhythms, and drugs screening. The purpose of this review was to update the current knowledge on the synthesis and biological functions of melatonin in zebrafish, keeping in mind its relevance not only in the physiology of the animal, but also in pathophysiological conditions.


Assuntos
Melatonina/metabolismo , Peixe-Zebra/metabolismo , Animais , Ritmo Circadiano/fisiologia , Glândula Pineal/metabolismo
2.
J Biol Rhythms ; 28(4): 249-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23929552

RESUMO

Clock gene expression is not only confined to the master circadian clock in the suprachiasmatic nucleus (SCN) but is also found in many other brain regions. The phase relationship between SCN and extra-SCN oscillators may contribute to known differences in chronotypes. The Octodon degus is a diurnal rodent that can shift its activity-phase preference from diurnal to nocturnal when running wheels become available. To understand better the relationship between brain clock gene activity and chronotype, we studied the day-night expression of the Period genes, Per1 and Per2, in the SCN and extra-SCN brain areas in diurnal and nocturnal degus. Since negative masking to light and entrainment to the dark phase are involved in the nocturnalism of this species, we also compare, for the first time, Per expression between entrained (EN) and masked nocturnal (MN) degus. The brains of diurnal, MN, and EN degus housed with wheels were collected during the light (ZT4) and dark (ZT16) phases. Per1 and Per2 mRNA levels were analyzed by in situ hybridization. Within the SCN, signals for Per1 and Per2 were higher at ZT4 irrespective of chronotype. However, outside of the SCN, Per1 expression in the hippocampus of EN degus was out of phase (higher values at ZT16) with SCN values. Although a similar trend was seen in MN animals, this day-night difference in Per1 expression was not significant. Interestingly, daily differences in Per1 expression were not seen in the hippocampus of diurnal degus. For other putative brain areas analyzed (cortices, striatum, arcuate, ventromedial hypothalamus), no differences in Per1 levels were found between chronotypes. Both in diurnal and nocturnal degus, Per2 levels in the hippocampus and in the cingulate and piriform cortices were in phase with their activity rhythms. Thus, diurnal degus showed higher Per2 levels at ZT4, whereas in both types of nocturnal degus, Per2 expression was reversed, peaking at ZT16. Together, the present study supports the hypothesis that the mechanisms underlying activity-phase preference in diurnal and nocturnal mammals reside downstream from the SCN, but our data also indicate that there are fundamental differences between nocturnal masked and entrained degus.


Assuntos
Química Encefálica/genética , Química Encefálica/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Octodon/fisiologia , Proteínas Circadianas Period/biossíntese , Proteínas Circadianas Period/genética , Animais , Autorradiografia , Hipocampo/metabolismo , Processamento de Imagem Assistida por Computador , Hibridização In Situ , Masculino , Atividade Motora/genética , Atividade Motora/fisiologia , Fenótipo , Sondas RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA