Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 499(3): 618-625, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29601817

RESUMO

Endogenous GLP-1 and GLP-1 receptor agonists (GLP-1RAs) regulate glucose metabolism via common and distinct mechanisms. Postprandial release of GLP-1 is modest and it is degraded by DPP-4 within 2 min, and hence it cannot enter the brain in substantial amount. In contrast, DPP-4-resistant GLP-1RAs are administered at 10 times higher concentration than endogenous GLP-1 level, which enables them to reach several brain regions including ARC and AP, the areas implicated in glucose metabolism. Hence, some of the effects of GLP-1RAs observed clinically and experimentally, including pancreatic ß-cell proliferation, are thought to involve the brain. However, the effects of centrally acting GLP-1/GLP-1RAs on glucose metabolism and underlying neural mechanism are unclear. This study aimed to establish the link of central GLP-1/GLP-1RA action to pancreatic ß-cell proliferation. Both subcutaneous (SC) and intracerebroventricular (ICV) injections of liraglutide increased the number of pancreatic ß-cells expressing Ki67 and PCNA, proliferation markers, in C57BL/6J mice. This effect was induced by single ICV administration of liraglutide at relatively low dose that was incapable of suppressing food intake. These SC and ICV liraglutide-induced effects were inhibited by 50% and 70%, respectively, by pretreatment with atropine, a muscarinic receptor blocker. ICV liraglutide induced c-Fos expression in the area postrema (AP), nucleus tractus solitaries (NTS), and dorsal motor nucleus of the vagus (DMX) of the brain stem. These results demonstrate that central action of liraglutide induces pancreatic ß-cell proliferation via the pathway involving the brain stem AP/NTS/DMX area and vagus nerve. This route is highly sensitive to GLP-1/GLP-1RA. Hence, this brain-pancreatic ß-cell pathway may operate in type 2 diabetic patients treated with GLP-RAs and serve to counteract the reduction of ß-cell mass.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Células Secretoras de Insulina/citologia , Liraglutida/farmacologia , Bulbo/metabolismo , Nervo Vago/metabolismo , Animais , Atropina/farmacologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Proliferação de Células/efeitos dos fármacos , Comportamento Alimentar , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Injeções Subcutâneas , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Liraglutida/administração & dosagem , Masculino , Bulbo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Nervo Vago/efeitos dos fármacos
2.
Sci Rep ; 7: 45819, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374855

RESUMO

Fibroblast growth factor 21 (FGF21), liver-derived hormone, exerts diverse metabolic effects, being considered for clinical application to treat obesity and diabetes. However, its anorexigenic effect is debatable and whether it involves the central mechanism remains unclarified. Moreover, the neuron mediating FGF21's anorexigenic effect and the systemic energy state supporting it are unclear. We explored the target neuron and fed/fasted state dependence of FGF21's anorexigenic action. Intracerebroventricular (ICV) injection of FGF21 markedly suppressed food intake in fed mice with elevated blood glucose. FGF21 induced c-Fos expression preferentially in hypothalamic paraventricular nucleus (PVN), and increased mRNA expression selectively for nucleobindin 2/nesfatin-1 (NUCB2/Nesf-1). FGF21 at elevated glucose increased [Ca2+]i in PVN NUCB2/Nesf-1 neurons. FGF21 failed to suppress food intake in PVN-preferential Sim1-Nucb2-KO mice. These findings reveal that FGF21, assisted by elevated glucose, activates PVN NUCB2/Nesf-1 neurons to suppress feeding under fed states, serving as the glycemia-monitoring messenger of liver-hypothalamic network for integrative regulation of energy and glucose metabolism.


Assuntos
Glicemia , Fatores de Crescimento de Fibroblastos/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Saciação/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ingestão de Alimentos , Infusões Intraventriculares , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Nucleobindinas , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-fos
3.
Mol Metab ; 5(8): 709-715, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27656408

RESUMO

OBJECTIVE: The dorsomedial hypothalamus (DMH) has been considered an orexigenic nucleus, since the DMH lesion reduced food intake and body weight and induced resistance to diet-induced obesity. The DMH expresses feeding regulatory neuropeptides and receptors including neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), cholecystokinin (CCK), leptin receptor, and melanocortin 3/4 receptors. However, the principal neurons generating the orexigenic function in the DMH remain to be defined. This study aimed to clarify the role of the DMH GABAergic neurons in feeding regulation by using optogenetics and electrophysiological techniques. METHODS: We generated the mice expressing ChRFR-C167A, a bistable chimeric channelrhodopsin, selectively in GABAergic neurons of DMH via locally injected adeno-associated virus 2. Food intake after optogenetic activation of DMH GABAergic neurons was measured. Electrophysiological properties of DMH GABAergic neurons were measured using slice patch clamp. RESULTS: Optogenetic activation of DMH GABAergic neurons promoted food intake. Leptin hyperpolarized and lowering glucose depolarized half of DMH GABAergic neurons, suggesting their orexigenic property. Optical activation of axonal terminals of DMH GABAergic neurons at the paraventricular nucleus of hypothalamus (PVN), where anorexigenic neurons are localized, increased inhibitory postsynaptic currents on PVN neurons and promoted food intake. CONCLUSION: DMH GABAergic neurons are regulated by metabolic signals leptin and glucose and, once activated, promote food intake via inhibitory synaptic transmission to PVN.

4.
Neuropeptides ; 56: 115-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26344333

RESUMO

The neurons in the hypothalamus regulate food intake and energy metabolism on reception of systemic energy states. Accumulating evidences have indicated that synaptic transmission on the hypothalamic neurons is modulated by the metabolic condition related to fasted/fed states, and that this modulation of synaptic plasticity plays a role in regulation of feeding. It has been shown that oxytocin (Oxt) neurons in the paraventricular nucleus (PVN) of the hypothalamus sense and integrate various peripheral and central signals and thereby induce satiety. However, whether metabolic conditions regulate the synaptic transmission on Oxt neurons in PVN remains unclear. The present study examined whether the fasted/fed states regulate synaptic transmission on Oxt neurons in PVN. The miniature excitatory postsynaptic currents (mEPSCs) onto Oxt neurons in PVN were increased under ad lib fed condition compared to 24h fasted condition. Furthermore, the NMDA receptor-mediated EPSC on Oxt neurons was increased under fed, compared to fasted, condition. In Oxt neurons, dynein light chain 2 (DYNLL2), a protein suggested to be implicated in the NMDA receptor trafficking to the postsynaptic site, was increased under fed, compared to fasted, condition. The present results suggest that feeding increases excitatory synaptic input on PVN Oxt neurons via mechanisms involving DYNLL2 upregulation and NMDA receptor-mediated synaptic reorganization.


Assuntos
Dineínas do Citoplasma/metabolismo , Jejum , Neurônios/fisiologia , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores , Masculino , Potenciais Pós-Sinápticos em Miniatura , Plasticidade Neuronal , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Wistar
5.
Aging (Albany NY) ; 6(3): 207-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24704640

RESUMO

Hyperglycemia impairs insulin secretion as well as insulin action, being recognized as the glucotoxicity that accelerates diabetes. However, the mechanism underlying the glucotoxicity in pancreatic ß-cells is not thoroughly understood. Hyperglycemia alters glucose metabolism within ß-cells and interstitial conditions around ß-cells, including elevated osmolarity and increased concentrations of insulin and ATP released from overstimulated ß-cells. In this study, to explore direct effects of these alterations on ß-cells, single ß-cells isolated from rat islets were cultured for 3 days with high (22.3 mM) glucose (HG), compared with control 5.6 mM glucose, followed by their functional assessment by measuring cytosolic Ca2+ concentration ([Ca2+]i). The [Ca2+]i response to a physiological rise in glucose concentration to 8.3 mM was impaired in b-cells following culture with HG for 3 days, while it was preserved in ß-cells following culture with non-metabolizable L-glucose and with elevated osmolarity, insulin and ATP. This HG-induced impairment of [Ca2+]i response to 8.3 mM glucose was prevented by adding azaserine, a hexosamine pathway inhibitor, into HG culture. Conversely, culture with glucosamine, which increases the hexosamine pathway flux, impaired [Ca2+]i response to 8.3 mM glucose, mimicking HG. These results suggest that the HG-associated abnormal glucose metabolism through hexosamine pathway, but not elevated osmolarity, insulin and ATP, plays a major role in the glucotoxicity to impair the secretory function of pancreatic ß-cells.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Glucose/metabolismo , Glucose/toxicidade , Hexosaminas/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Insulina/metabolismo , Secreção de Insulina , Redes e Vias Metabólicas , Concentração Osmolar , Ratos , Ratos Wistar
6.
Neurosci Lett ; 564: 72-7, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24525246

RESUMO

Use of phencyclidine (PCP) can mimic some aspects of schizophrenia. However, the underlying mechanism is unclear. Administration of PCP is known to activate mesolimbic dopamine pathway. In this study, we focused on ventral tegmental area (VTA) of mesolimbic dopamine pathway as target of PCP for inducing schizophrenia-like symptoms. Single VTA neuron was isolated and its neural activity was monitored by measuring cytosolic Ca(2+) concentration ([Ca(2+)]i) followed by immunocytochemical identification of dopamine neurons. Administration of glutamate increased [Ca(2+)]i in dopamine neurons from control rats, and the [Ca(2+)]i increase was inhibited in the presence of PCP. In contrast, in VTA dopamine neurons from rats chronically treated with PCP for 7 days, administration of glutamate was able to induce [Ca(2+)]i increase in the presence of PCP. Furthermore, this glutamate-induced [Ca(2+)]i increase in the presence of PCP continued even after washout of glutamate and this effect lasted as long as PCP was present. This long-lasting glutamate-induced [Ca(2+)]i increase in the presence of PCP was not observed or significantly attenuated under Ca(2+) free condition and by N-type Ca(2+) channel blocker ω-conotoxin. The results indicate that chronic treatment with PCP reverses the acute PCP effect on VTA dopamine neurons from inhibitory to stimulatory tone, and consequently induces long-lasting activation of dopamine neurons by glutamate.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Fenciclidina/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA