Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 733: 150685, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39270414

RESUMO

Due to the pivotal role of carbonic anhydrase IX (CA IX) in pathological conditions, there's a pressing need for novel inhibitors to improve patient outcomes and clinical management. Herein, we investigated the inhibitory efficacy of six alkaloids from Ruta chalepensis against CA IX through in vitro inhibition assay and computational modeling. Skimmianine and maculosidine displayed significant inhibitory activity in vitro, with low IC50 values of 105.2 ± 3.2 and 295.7 ± 14.1 nM, respectively. Enzyme kinetics analyses revealed that skimmianine exhibited a mixed inhibition mode, contrasting with the noncompetitive inhibition mechanism observed for the reference drug (acetazolamide), as indicated by intersecting lines in the Lineweaver-Burk plots. The findings of docking calculations revealed that skimmianine and maculosidine exhibited extensive polar interactions with the enzyme. These alkaloids demonstrate substantial binding interactions and occupy identical binding site as acetazolamide, thereby enhancing their efficacy as inhibitors of CA IX. Utilizing a 100 ns molecular dynamics (MD) simulation, the dynamic interactions between isolated alkaloids and CA IX were intensively assessed. Analysis of diverse MD parameters revealed that skimmianine and maculosidine displayed consistent trajectories and notable energy stabilization during their interaction with CA IX. The findings of MM/PBSA analysis depicted the minimum binding free energy for skimmianine and maculosidine. In addition, the Potential Energy Landscape (PEL) analysis revealed distinct and stable conformational states for the CA IX-ligand complexes, with Skimmianine showing the most stable and lowest energy configuration. These computational findings align with experimental results, emphasizing the potential efficacy of skimmianine and maculosidine as inhibitors of CA IX.


Assuntos
Alcaloides , Antígenos de Neoplasias , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ruta , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Alcaloides/química , Alcaloides/farmacologia , Humanos , Ruta/química , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/química , Simulação por Computador , Cinética , Sítios de Ligação
2.
Mol Biol Rep ; 51(1): 897, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115553

RESUMO

BACKGROUND: Diabetes mellitus (DM) is a global metabolic problem. Several factors including hyperglycemia, oxidative stress, and inflammation play significant roles in the development of DM complications. Apoptosis is also an essential event in DM pathophysiology, -with B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X (Bax) determining apoptotic susceptibility. The present study aimed to elucidate the protective effects of two doses of taxifolin (TXF) on liver damage in diabetic rats and explore the possible mechanisms of action. METHODS AND RESULTS: DM was induced in eighteen rats through intraperitoneal injections of 50 mg/kg streptozotocin and 110 mg/kg nicotinamide. Diabetic rats received daily oral intubation of 25 and 50 mg/kg TXF for 3 months. In the untreated diabetic group, there was a significant increase in fasting and postprandial glucose levels, glycosylated hemoglobin A1C (HbA1c), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), while insulin and adiponectin levels decreased significantly. Both TXF doses mitigated hyperglycemia, regulated cytokine production, and increased insulin level. Gene expressions and protein levels of Bax, caspase 3, and cytochrome c were significantly increased, while Bcl-2 was significantly decreased in the livers of diabetic rats, effects that were significantly ameliorated after TXF treatment. The results of the TUNEL assay supported the apoptotic pathway. Additionally, TXF significantly decreased lipid peroxidation and enhanced antioxidant enzyme activity in diabetic rats. Liver enzymes and histopathological changes also showed improvement. CONCLUSIONS: TXF mitigated diabetes-associated hepatic damage by reducing hyperglycemia, oxidative stress, inflammation, and modulating anti-/pro-apoptotic genes and proteins. A dose of 50 mg/kg TXF was more effective than 25 mg/kg and is recommended for consumption.


Assuntos
Apoptose , Caspase 3 , Diabetes Mellitus Experimental , Fígado , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2 , Quercetina , Transdução de Sinais , Proteína X Associada a bcl-2 , Animais , Quercetina/farmacologia , Quercetina/análogos & derivados , Quercetina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Transdução de Sinais/efeitos dos fármacos , Masculino , Caspase 3/metabolismo , Caspase 3/genética , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Apoptose/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Insulina/metabolismo
3.
Environ Res ; 231(Pt 2): 115913, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178754

RESUMO

Exposure to endocrine disrupting chemicals (EDCs) or heavy metals are synthetic compounds that can lead to negative effect on health, including immune and endocrine system disruption, respiratory problems, metabolic issues, diabetes, obesity, cardiovascular problems, growth impairment, neurological and learning disabilities, and cancer. Petrochemical industry drilling wastes, which contain varying levels of EDCs, are known to pose a significant risk to human health. This study aimed to investigate the levels of toxic elements in biological samples of individuals working in the petrochemical drilling sites. Biological samples, including scalp hair and whole blood, were collected from petrochemical drilling workers, individuals residing in the same residential area, and control age-matched persons from nonindustrial areas. The samples were oxidized by an acid mixture before analysis using atomic absorption spectrophotometry. The accuracy and validity of the methodology were verified through certified reference materials from scalp hair and whole blood. The results showed that the concentrations of toxic elements, such as cadmium and lead, were higher in biological samples of petrochemical drilling employees, while lower essential element levels (iron and zinc) were detected in their samples. This study highlights the significance of adopting better practices to reduce exposure to harmful substances and protect the health of petrochemical drilling workers and the environment. It also suggests that perspective management including policymakers and industry leaders should take measures to minimize exposure to EDCs and heavy metals to promote worker safety and public health. These measures could include the implementation of strict regulations and better occupational health practices to reduce toxic exposure and promote a safer work environment.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Metais Pesados , Exposição Ocupacional , Humanos , Cádmio/análise , Disruptores Endócrinos/análise , Meio Ambiente , Cabelo/química , Metais Pesados/análise , Exposição Ocupacional/normas , Poluentes Ambientais/análise
4.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235257

RESUMO

This study investigated the effects of syringic acid (SA) on renal, cardiac, hepatic, and neuronal diabetic complications in streptozotocin-induced neonatal (nSTZ) diabetic rats. STZ (110 mg/kg i.p) was injected into Wistar rat neonates as a split dose (second and third postnatal day). Diabetes mellitus was diagnosed in adults by measuring fasting blood glucose levels, urine volume, and food and water intake. The treatment of SA (25 mg/kg, 50 mg/kg p.o) was given from the 8th to 18th postnatal week. To assess the development of diabetic complications and the effect of therapy, biochemical indicators in serum and behavioural parameters were recorded at specific intervals during the study period. SA (25 mg/kg, 50 mg/kg p.o) treatment reduced hyperglycaemia, polydipsia, polyphagia, polyuria, relative organ weight, cardiac hypertrophic indices, inflammatory markers, cell injury markers, glycated haemoglobin, histopathological score, and oxidative stress, and increased Na/K ATPase activity. These findings suggest that SA might significantly alleviate diabetic complications and/or renal, neuronal, cardiac, and hepatic damage in nSTZ diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Adenosina Trifosfatases , Animais , Glicemia , Diabetes Mellitus Experimental/patologia , Ácido Gálico/análogos & derivados , Hemoglobinas Glicadas , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Estresse Oxidativo , Ratos , Ratos Wistar , Estreptozocina/farmacologia
5.
Inflammopharmacology ; 30(6): 2097-2106, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36085399

RESUMO

Piroxicam is used to treat the pain, swelling, and stiffness associated with osteoarthritis and rheumatoid arthritis, but it has many side effects, such as hypertension, elevation of liver enzymes, and hepatitis. This study used selenium-enriched probiotics to reduce the side effects of piroxicam on the liver and kidney tissues and functions. Forty-eight male albino mice were randomly assigned to control, piroxicam (P), piroxicam plus selenium-enriched Lactobacillus plantarum PSe40/60/1 (P + SP), piroxicam plus selenium-enriched Bifidobacterium longum BSe50/20/1 (P + SB), selenium-enriched L. plantarum PSe40/60/1 (SP), and selenium-enriched B. longum BSe50/20/1 (SB) groups. In this study, the function of the liver and kidney was biochemically determined; the histopathology of the liver and kidney tissues was microscopically examined and the expression of inflammatory and anti-inflammatory genes in liver and kidney tissues was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Liver and kidney functions were significantly reduced in the piroxicam group compared with control. Liver and kidney tissues were damaged in the piroxicam group while they appeared more or less normal in the SB group. The expression of inflammatory genes was significantly up-regulated in the liver and kidney tissues of the piroxicam group compared to the control group. The expression of anti-inflammatory genes was significantly down-regulated in the liver and kidney of the piroxicam group and up-regulated in the liver and kidney of the SB group compared to the control group. Therefore, these mutated strains of probiotics were useful in reducing the side effects of the piroxicam drug on the liver and kidney.


Assuntos
Probióticos , Selênio , Animais , Camundongos , Masculino , Selênio/farmacologia , Piroxicam/farmacologia , Probióticos/farmacologia , Fígado , Rim/metabolismo
6.
Invest New Drugs ; 38(5): 1303-1315, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32048108

RESUMO

Diabetes with poor glycemic control is accompanying with an increased risk of disease namely atherosclerotic cardiovascular. Diosmin (DSN), which is obtained from citrus fruit used to assist the treatment of hemorrhoids or chronic venous atherosclerosis diseases, has an antioxidant, anti-hyperglycemic and anti-inflammatory effect. DSN is characterized by poor water solubility which limits its absorption by the gastrointestinal tract. To overcome this limitation, this study was designed to increase DSN bioavailability and solubility, through its loading on polymeric matrix; hydroxypropyl starch (HPS) and Poly lactide-glycolide-chitin (PLGA/chitin) to prepare Diosmin nanoparticles (DSN-NPs). Two methods were used to prepare DSN- NPs; Emulsion-solvent evaporation and Acid-base neutralization followed by further assessment on diabetes induced atherosclerosis The study was conducted on 50 animals assigned into 5 groups with 10 animals in each group: Group I: Normal rats received only normal saline, Group II: Diabetic rats, Group III: diabetic rats received oral DSN, Group IV: diabetic rats received DSN loaded HPS, Group V: diabetic rats received DSN loaded PLGA/chitin. Levels of total cholesterol, triglycerides, HDL-cholesterol, insulin, MDA and NO. plasminogen activator inhibitor-1 PAI-1), Paraoxonase-1(PON1), transforming growth factor-ß1 (TGF-ß1), NF-Ò¡B and Ang II were estimated. Our study revealed that, there was statistically significant difference between DSN treated group compared with DSN loaded HPS treated group and DSN loaded PLGA/chitin. Furthermore, the results obtained clearly disclosed no statistically significant difference between DSN loaded PLGA/chitin and control group exhibited DSN loaded PLGA/chitin has the higher ability to counteract the atherosclerosis factors induced by diabetes in all rats.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Aterosclerose/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Diosmina/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aterosclerose/sangue , Aterosclerose/metabolismo , Aterosclerose/patologia , Quitina/administração & dosagem , Quitina/química , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diosmina/química , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Nanopartículas/química , Nanopartículas/ultraestrutura , Óxido Nítrico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos
7.
Molecules ; 25(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331408

RESUMO

The incidence of adverse reactions in food is very low, however, some food products contain toxins formed naturally due to their handling, processing and storage conditions. 5-(Hydroxymethyl)-2-furfural (HMF) can be formed by hydrogenation of sugar substances in some of manufactured foodstuffs and honey under elevated temperatures and reduced pH conditions following Maillard reactions. In previous studies, it was found that HMF was responsible for harmful (mutagenic, genotoxic, cytotoxic and enzyme inhibitory) effects on human health. HMF occurs in a wide variety of food products like dried fruit, juice, caramel products, coffee, bakery, malt and vinegar. The formation of HMF is not only an indicator of food storage conditions and quality, but HMF could also be used as an indicator of the potential occurrence of contamination during heat-processing of some food products such as coffee, milk, honey and processed fruits. This review focuses on HMF formation and summarizes the adverse effects of HMF on human health.


Assuntos
Furaldeído/análogos & derivados , Animais , Carcinógenos/química , Carcinógenos/farmacologia , Carcinógenos/toxicidade , Laticínios/análise , Exposição Dietética/efeitos adversos , Furaldeído/química , Furaldeído/farmacologia , Furaldeído/toxicidade , Temperatura Alta , Estrutura Molecular
8.
J Fluoresc ; 29(3): 703-710, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31041696

RESUMO

The main objective of technical protective clothing is to enhance people safety at work, which may save their life or keep them healthy away against some hazards. We developed a warning cotton fabric with a traffic safety warning photoluminescence character that continues emitting light for a long period of time after the removal of the illuminant source. Rare earth-doped strontium aluminate was dispersed in an aqueous medium of a polyacrylic-based binder to give a cross-linkable photoluminescent formula to be applied onto cotton substrate employing spray-coat approach. To introduce a transparent photoluminescent film, the Rare earth pigment must be fully dispersed to prevent aggregation. The long-persistent photoluminescent layer was deposited on cotton surface employing different concentrations of the rare earth pigment phosphor. The excitation wavelength maximum band of the spray-coated film on cotton fabric was found to occur at 365 nm, while the emission was recorded at 515 nm. Yellowish-green emissive color was monitored by CIE color data under the ultraviolet excitation source. The spray-coated fabric was characterized by wavelength dispersive X-ray fluorescence (WD-XRF), phosphorescence and excitation spectra, elements mapping, scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The comfort measurements were studied by exploring both of fabric stiffness and air-permeability. Furthermore, the spray-coated textile substrates displayed good fastness properties and a reversible luminescent glow in the dark.

9.
Toxicol Ind Health ; 35(1): 63-78, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30803421

RESUMO

The present study aimed to investigate the impact of perinatal potassium bromate (KBrO3) exposure on the development of sensorimotor reflexes and redox status, and on the histological architecture of the brain, liver, and kidney of newborn mice. Pregnant mice received 1-ml bottled drinking water daily by oral intubation and served as the control group. Another group of pregnant mice were supplemented orally with 200 mg/kg body weight KBrO3 dissolved in drinking water from gestation day 5 to postnatal day 21. KBrO3 induced a decrease in the postnatal body weight in the newborn mice. KBrO3-exposed newborn mice showed poor performance and delayed development of the sensorimotor reflexes. Histological changes, increased lipid peroxidation, and altered antioxidants were reported in the cerebrum, cerebellum, medulla oblongata, liver, and kidney of the KBrO3-exposed newborn mice. In conclusion, these findings demonstrated that perinatal exposure to bromate induced oxidative stress, histological and behavioral alterations, and was a potential teratogen in newborn mice.


Assuntos
Bromatos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Anormalidades Induzidas por Medicamentos/etiologia , Anormalidades Induzidas por Medicamentos/patologia , Animais , Animais Recém-Nascidos/anormalidades , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/metabolismo , Feminino , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Gravidez , Reflexo de Endireitamento/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Superóxido Dismutase/metabolismo
10.
Int J Biol Macromol ; 277(Pt 3): 134169, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39097057

RESUMO

The uncontrolled administration of the cisplatin drug (CPTN) resulted in numerous drawbacks. Therefore, effective, affordable, and biocompatible delivery systems were suggested to regulate the loading, release, and therapeutic effect of CPTN. Zinc phosphate/hydroxyapatite hybrid form (ZP/HP) and core-shell nano-rod morphology, as well as its functionalized derivative with cellulose (CF@ZP/HP), were synthesized by the facile dissolution precipitation method followed by mixing with cellulose fibers, respectively. The developed CF@ZP/HP displayed remarkable enhanced CPTN loading properties (418.2 mg/g) as compared to ZP/HP (259.8 mg/g). The CPTN loading behaviors into CF@ZP/HP follow the Langmuir isotherm properties (R2 > 0.98) in addition to the kinetic activities of the pseudo-first-order model (R2 > 0.96). The steric assessment validates the notable increase in the existing loading receptors after the functionalization of ZP/HP with CF from 57.7 mg/g (ZP/HP) to 90.5 mg/g. The functionalization also impacted the capacity of each existing receptor to be able to ensure 5 CPTN molecules. This, in addition to the loading energies (<40 kJ/mol), donates the loading of CPTN by physical multi-molecular processes and in vertical orientation. The CPTN releasing patterns of CF@ZP/HP exhibit slow and controlled properties (95.7 % after 200 h at pH 7.4 and 100 % after 120 h at pH 5.5), but faster than the properties of ZP/HP. The kinetic modeling of the release activities together with the diffusion exponent (>0.45) reflected the release of CPTN according to both erosion and diffusion mechanisms. The loading of CPTN into both ZP/HP and CF@ZP/HP also resulted in a marked enhancement in the anticancer activity of CPTN against human cervical epithelial malignancies (HeLa) (cell viability = 5.6 % (CPTN), 3.2 % (CPTN loaded ZP/HP), and 1.12 % (CPTN loaded CF@ZP/HP)).


Assuntos
Celulose , Cisplatino , Portadores de Fármacos , Liberação Controlada de Fármacos , Durapatita , Fosfatos , Compostos de Zinco , Celulose/química , Durapatita/química , Durapatita/farmacologia , Cisplatino/farmacologia , Cisplatino/química , Humanos , Portadores de Fármacos/química , Compostos de Zinco/química , Fosfatos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Cinética , Sobrevivência Celular/efeitos dos fármacos
11.
RSC Adv ; 14(24): 16991-17007, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38799215

RESUMO

An advanced form of magnesium-rich hydroxyapatite (Mg·HAP) was modified with two types of biopolymers, namely chitosan (CH/Mg·HAP) and ß-cyclodextrin (CD/Mg·HAP), producing two types of bio-composites. The synthesized materials were developed as enhanced carriers for levofloxacin to control its loading, release, and anti-inflammatory properties. The polymeric modification significantly improved the loading efficiency to 281.4 mg g-1 for CH/Mg·HAP and 332.4 mg g-1 for CD/Mg·HAP compared with 218.3 mg g-1 for Mg·HAP. The loading behaviors were determined using conventional kinetic and isotherm models and mathematical parameters of new equilibrium models (the monolayer model of one energy). The estimated density of effective loading sites (Nm (LVX) = 88.03 mg g-1 (Mg·HAP), 115.8 mg g-1 (CH/Mg·HAP), and 138.5 mg g-1 (CD/Mg·HAP)) illustrates the markedly higher loading performance of the modified forms of Mg·HAP. Moreover, the loading energies (<40 kJ mol-1) in conjunction with the capacity of each loading site (n > 1) and Gaussian energies (<8 kJ mol-1) signify the physical trapping of LVX molecules in vertical orientation. The addressed materials validate prolonged and continuous release behaviors. These behaviors accelerated after the modification procedures, as the complete release was identified after 160 h (CH/Mg·HAP) and 200 h (CD/Mg·HAP). The releasing behaviors are regulated by both diffusion and erosion mechanisms, according to the kinetic investigations and diffusion exponent analysis (>0.45). The entrapping of LVX into Mg·HAP induces its anti-inflammatory properties against the generation of cytokines (IL-6 and IL-8) in human bronchial epithelia cells (NL20), and this effect displays further enhancement after the integration of chitosan and ß-cyclodextrin.

12.
Lab Anim Res ; 40(1): 19, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745206

RESUMO

BACKGROUND: Thyroid hormones (THs) regulate growth, development and function of different tissues. Hypothyroidism is a common clinical disorder characterized by deficiency in THs and adversely affects the development and functions of several organs. This work aimed to investigate the ameliorative effect of eltroxin (ELT), a hypothyroidism medication, and hesperidin (HSP), a flavonoid, against testicular and renal toxicity in hypothyroid rats. Twenty-four rats were divided into four groups and treated orally for 12 weeks. Group I (control), group II (hypothyroidism) received 20 mg/kg carbimazole (CBZ), group III received CBZ and 0.045 mg/kg ELT, and group IV received CBZ and 200 mg/kg HSP. RESULTS: CBZ administration induced biochemical and histopathological changes in testis and kidney. Co-administration of ELT or HSP significantly (P < 0.05) ameliorated THs, reduced urea and creatinine while raised follicle stimulating hormone (FSH), Luteinizing hormone (LH), and testosterone in serum. Testicular and renal malondialdehyde level as a lipid peroxidation indicator, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were significantly (P < 0.05) decreased while glutathione content, glutathione peroxidase, and glutathione-s-transferase activities were significantly (P < 0.05) increased. The histopathological changes were also diminished. Decreased mRNA and protein expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and peroxisome proliferator-activated receptor gamma(PPARγ) in hypothyroid rats were up-regulated after ELT or HSP treatment. CONCLUSIONS: ELT and HSP showed antioxidant and anti-inflammatory effects against CBZ-induced testicular and renal toxicity, and these effects may be promoted via activating Nrf2/HO-1 and PPARγ signaling pathways.

14.
Poult Sci ; 103(2): 103258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070402

RESUMO

Sulfonamides are commonly used antibacterials in commercial poultry, contributing toward the development of multidrug-resistant (MDR) phenotypes among Escherichia coli and that has emerged as global concern. The current study aimed to assess the sulfonamide resistance among isolated E. coli strains among commercial broilers. The bacterial strains were identified from fecal samples (n = 100) using selective media, followed by initial identification based on biochemical profiles. The susceptibility was determined by measuring the minimum inhibitory concentration (MIC) against sulfamethoxazole. The study also evaluated mobile genetic elements (MGEs), the mediators of antibiotic resistance, by amplification of plasmid DNA using specific primer PCR. Additionally, the isolates were subjected to multilocus sequence typing (MLST) analysis to investigate the genetic diversity among E. coli carrying sulfonamide resistance genes. The results revealed that 58% (58/100) E. coli strains were resistant to sulfonamides, with 36.20% (21/58) of the strains exhibiting an MIC breakpoint ≥512 µg/mL. PCR analysis showed that 42.85% (9/21) of the strains harbored the sul-1 gene, while 38.09% (8/21) carried the sul-2 gene, and 19.04% (4/21) had both genes. No isolate showed the presence of the sul-3 gene. Furthermore, class 1 and class 2 integrons were identified among 80.95% (17/21) and 19.04% (4/21) of the strains, respectively. MLST analysis confirmed that the strains belonged to sequence types (STs) including ST1638, ST155, ST48, ST350, ST23, ST156, and ST746. These findings underscore the diversity among E. coli strains in commercial poultry, which poses a significant risk.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Galinhas/genética , Prevalência , Tipagem de Sequências Multilocus/veterinária , Antibacterianos/farmacologia , Plasmídeos/genética , Sulfanilamida , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Aves Domésticas/microbiologia , Sulfonamidas/farmacologia , Variação Genética , Testes de Sensibilidade Microbiana/veterinária
15.
Front Chem ; 12: 1456057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39324064

RESUMO

Zinc-phosphate/hydroxyapatite hybrid form (ZP/HP) in core-shell nanostructure was developed and functionalized with both chitosan (CS@ZP/HP) and ß-cyclodextrin (CD@ZP/HP) as bio-composite of enhanced physicochemical and biological properties. These structures were assessed as potential deliveries of 5-fluorouracil, exhibiting enhanced loading, release, and anti-cancer behaviors. The functionalization strongly prompted the loading effectiveness to be 301.3 mg/g (CS@ZP/HP) and 342.8 mg/g (CD@ZP/HP) instead of 238.9 mg/g for ZP/HP. The loading activities were assessed based on the hypotheses of traditional kinetic and isotherm models, alongside the computational variables of the monolayer model with a single energetic site as an advanced isotherm model. The functionalized versions exhibit much greater loading efficacy compared to ZP/HP as a result of the increment in the density of the existing loading sites [Nm(5-Fu) = 78.85 mg/g (ZP/HP), 93.87 mg/g (CS@ZP/HP), and 117.8 mg/g (CD@ZP/HP)]. Furthermore, the loading energies of approximately 40 kJ/mol, together with the loading potential of each receptor (n > 1) and Gaussian energies of approximately 8 kJ/mol, indicate the physical entrapment of 5-Fu molecules according to a vertical orientation. The materials mentioned verify long-term and continuous release characteristics. Following the modification processes, this behavior became faster as both CS@ZP/HP and CD@ZP/HP displayed complete release within 120 h at pH 1.2. The kinetic studies and diffusing exponent (>0.45) indicate that release characteristics are controlled by both diffusion and erosion processes. These carriers also markedly increase the cytotoxicity of 5-Fu against HCT-116 colorectal cancer cell lines: 5-Fu-ZP/HP (3.2% cell viability), 5-Fu-CS@ZP/HP (1.12% cell viability), and 5-Fu-CD@ZP/HP (0.63% cell viability).

16.
Int J Biol Macromol ; 273(Pt 1): 133118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38871106

RESUMO

Developing carbon quantum dots (CQDs) from bio-waste lignin for effectively detecting Cu2+ is of great significance for promoting the value-added utilization of lignin resources. However, the limited amount of surface-active groups and low quantum yield of lignin-based CQDs hinder their application in this regard. Herein, bio-waste lignin was converted into value-added amine functionalized CQDs using a facile two-step hydrothermal approach. The as-synthesized CQDs modified with amino groups exhibit bright green fluorescence, abundant surface functional groups, high water solubility and uniform particle size (3.9 nm). Systematic analysis demonstrates that the rich NH2 groups (~12.3 %) on the CQDs backbone improve their fluorescence properties (quantum yield increased from 3.4 % to 21.1 %) and specific detection ability for Cu2+. The developed NH2-CQDs serve as an efficient fluorescent probe, displaying high sensitivity and selectivity towards Cu2+ in aqueous system, with a detection limit of 2.42 µmol/L, which is lower than the maximum permitted amount of Cu2+ in drinking water (20 µmol/L). The detection mechanism of NH2-CQDs for Cu2+ is attributed to the synergy of static quenching and photo-induced electron transfer. This study provides a valuable reference for the synthesis of high-quality fluorescent CQDs from lignin resources and the effective detection of trace Cu2+ in aquatic environments.


Assuntos
Aminas , Carbono , Cobre , Lignina , Pontos Quânticos , Pontos Quânticos/química , Cobre/análise , Cobre/química , Lignina/química , Carbono/química , Aminas/química , Água/química , Poluentes Químicos da Água/análise , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Limite de Detecção
17.
Int J Biol Macromol ; 265(Pt 2): 130615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538375

RESUMO

A green hybridized structure of Fe0 painted chitosan/cellulose base (Fe0@CS/CF) has been developed using cellulose extracted from sugarcane bagasse along with reduction agents sourced from Khaya senegalensis leaves. The composite was assessed as an affordable, powerful, and multifunctional catalyst for enhancing the degradation of Levofloxacin (LVX) remnants within water supplies via photo-Fenton's interactions. Using a dosage of 0.5 g/L, the Fe0@CS/CF blend demonstrated noteworthy catalytic qualities, resulting in the complete photo-Fenton's degradation of LVX at a level of 25 mg/L after 40 min. However, the complete diminution of organic carbon (TOC) occurred only after 100 min, suggesting the presence of significant intermediate residues. The identified intermediate chemicals and confirmed hydroxyl radicals as the main oxidizer suggest that the degradation pathway involves carboxylation/decarboxylation, hydroxylation, demethylation, and oxidation of quinolone rings. The toxicity properties of untreated LVX solutions and their subsequent oxidized byproducts were assessed by evaluating their inhibiting impact on Vibrio fischeri over various durations. The samples that experienced partial oxidation at initial testing demonstrated a higher level of toxicity in comparison to the parent LVX. However, the sample that was treated for 100 min demonstrated substantial biological safety and a non-toxic nature. The blend of ingredients has a synergistic impact that enhances the uptake, Fenton's, photocatalytic, and photo-Fenton's characteristics of the hosted Fe0 nanoparticles.


Assuntos
Quitosana , Saccharum , Levofloxacino , Celulose , Peróxido de Hidrogênio/química , Oxirredução
18.
Poult Sci ; 103(1): 103206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980757

RESUMO

This study investigated the effects of nanomethionine (nano-meth) on performance, antioxidants, and gene expression of HSP70, HSP90 and Heat Shock factor-1 (HSF-1) from the liver, and TLR4 from the jejunum, of broiler chickens reared under normal temperatures or under heat stress. Three hundred 1-day-old chicks were randomly assigned to 5 treatment groups. Group 1 served as control. Under normal temperature, birds in group 2 received nano-meth (10 mL/L of drinking water) from d1 until the experiment ended. Group 3 birds were heat-stressed (HS) and did not receive any supplementation. Group 4 received nano-meth in the same dose from d1 old until experiment ended, and the birds were exposed to HS. Group 5 birds were HS and received supplementation of nano-meth during the HS period only. Nano-meth improved (P < 0.0001) final body weight, weight gain, feed conversion ratio, and also decreased (P < 0.0001) the effect of HS on growth performance. Reduction (P < 0.0001) in malondialdehyde and changes in antioxidant enzymes GPX and CAT activity indicated the antioxidant effect of nano-meth. Nano-meth supplementation caused an increase in the expression of HSP70 , HSP90 and HSF1, and a downregulation of TLR4 gene expression. Additionally, nano-meth-supplemented groups showed marked improvement in the histological liver structure, intestinal morphology and villus height compared to control or HS groups.


Assuntos
Galinhas , Transcriptoma , Animais , Galinhas/fisiologia , Receptor 4 Toll-Like/metabolismo , Antioxidantes/metabolismo , Resposta ao Choque Térmico , Suplementos Nutricionais , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Dieta/veterinária , Ração Animal/análise
19.
ChemSusChem ; 17(18): e202400551, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38618906

RESUMO

Over the past decades, CO2 greenhouse emission has been considerably increased, causing global warming and climate change. Indeed, converting CO2 into valuable chemicals and fuels is a desired option to resolve issues caused by its continuous emission into the atmosphere. Nevertheless, CO2 conversion has been hampered by the ultrahigh dissociation energy of C=O bonds, which makes it thermodynamically and kinetically challenging. From this prospect, photocatalytic approaches appear promising for CO2 reduction in terms of their efficiency compared to other traditional technologies. Thus, many efforts have been made in the designing of photocatalysts with asymmetric sites and oxygen vacancies, which can break the charge distribution balance of CO2 molecule, reduce hydrogenation energy barrier and accelerate CO2 conversion into chemicals and fuels. Here, we review the recent advances in CO2 hydrogenation to C1 and C2 products utilizing photocatalysis processes. We also pin down the key factors or parameters influencing the generation of C2 products during CO2 hydrogenation. In addition, the current status of CO2 reduction is summarized, projecting the future direction for CO2 conversion by photocatalysis processes.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39356319

RESUMO

The well-known antibiotic gentamicin (GEN) works well against a variety of pathogenic bacteria, nevertheless its therapeutic use might be limited by the possibility of nephrotoxicity. The naturally occurring flavonoid galangin (GAL) has several interesting anti-inflammatory and antioxidant properties. The present study evaluated the nephroprotective effect of GAL on GEN-induced renal injury. Rats received GAL for 14 days and GEN from day 8 to day 14. There was a significant increase in serum urea and creatinine along with several histopathological changes in the kidney following GEN administration. GEN-treated rats also showed increased levels of kidney MDA and NO, and decreased GSH content and activities of antioxidant enzymes. Rats received GEN also demonstrated increased NF-κB p65, iNOS, TNF-α, IL-1ß and IL-6 levels in the kidney. GAL remarkably prevented tissue injury, attenuated MDA and NO levels, improved antioxidants, and decreased levels of inflammatory mediators in the kidney of GEN-treated rats. Furthermore, GEN-administrated rats exhibited increased Bax and caspase-3 with concomitant decline in Bcl-2 levels in the kidney, an effect that GAL attenuated. In conclusion, GAL prevents GEN-induced nephrotoxicity by attenuating oxidative stress, inflammation, and apoptosis and augmenting antioxidant defense, suggesting its therapeutic potential against drug nephrotoxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA