Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Surg ; 278(6): e1277-e1288, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154066

RESUMO

OBJECTIVE: Injured tissue predisposes the subject to local and systemic infection. We studied injury-induced immune dysfunction seeking novel means to reverse such predisposition. BACKGROUND: Injury mobilizes primitive "DANGER signals" [danger-associated molecular patterns (DAMPs)] activating innate immunocyte (neutrophils, PMN) signaling and function. Mitochondrial formyl peptides activate G -protein coupled receptors (GPCR) like formyl peptide receptor-1. Mitochondrial DNA and heme activate toll-like receptors (TLR9 and TLR2/4). GPCR kinases (GRKs) can regulate GPCR activation. METHODS: We studied human and mouse PMN signaling elicited by mitochondrial DAMPs (GPCR surface expression; protein phosphorylation, or acetylation; Ca 2+ flux) and antimicrobial functions [cytoskeletal reorganization, chemotaxis (CTX), phagocytosis, bacterial killing] in cellular systems and clinical injury samples. Predicted rescue therapies were assessed in cell systems and mouse injury-dependent pneumonia models. RESULTS: Mitochondrial formyl peptides activate GRK2, internalizing GPCRs and suppressing CTX. Mitochondrial DNA suppresses CTX, phagocytosis, and killing through TLR9 through a novel noncanonical mechanism that lacks GPCR endocytosis. Heme also activates GRK2. GRK2 inhibitors like paroxetine restore functions. GRK2 activation through TLR9 prevented actin reorganization, implicating histone deacetylases (HDACs). Actin polymerization, CTX, bacterial phagocytosis, and killing were also rescued, therefore, by the HDAC inhibitor valproate. Trauma repository PMN showed GRK2 activation and cortactin deacetylation, which varied with severity and was most marked in patients developing infections. Either GRK2 or HDAC inhibition prevented loss of mouse lung bacterial clearance, but only the combination rescued clearance when given postinjury. CONCLUSIONS: Tissue injury-derived DAMPs suppress antimicrobial immunity through canonical GRK2 activation and a novel TLR-activated GRK2-pathway impairing cytoskeletal organization. Simultaneous GRK2/HDAC inhibition rescues susceptibility to infection after tissue injury.


Assuntos
Anti-Infecciosos , Neutrófilos , Humanos , Camundongos , Animais , Neutrófilos/metabolismo , Actinas/metabolismo , Receptor Toll-Like 9/metabolismo , DNA Mitocondrial/metabolismo , Peptídeos/metabolismo , Heme/metabolismo
2.
Thorax ; 78(2): 151-159, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35613855

RESUMO

RATIONALE: The increased mortality and morbidity seen in critically injured patients appears associated with systemic inflammatory response syndrome (SIRS) and immune dysfunction, which ultimately predisposes to infection. Mitochondria released by injury could generate danger molecules, for example, ATP, which in turn would be rapidly scavenged by ectonucleotidases, expressed on regulatory immune cells. OBJECTIVE: To determine the association between circulating mitochondria, purinergic signalling and immune dysfunction after trauma. METHODS: We tested the impact of hepatocyte-derived free mitochondria on blood-derived and lung-derived CD8 T cells in vitro and in experimental mouse models in vivo. In parallel, immune phenotypic analyses were conducted on blood-derived CD8 T cells obtained from trauma patients. RESULTS: Isolated intact mitochondria are functional and generate ATP ex vivo. Extracellular mitochondria perturb CD8+ T cells in co-culture, inducing select features of immune exhaustion in vitro. These effects are modulated by scavenging ATP, modelled by addition of apyrase in vitro. Injection of intact mitochondria into recipient mice markedly upregulates the ectonucleotidase CD39, and other immune checkpoint markers in circulating CD8+ T cells. We note that mice injected with mitochondria, prior to instilling bacteria into the lung, exhibit more severe lung injury, characterised by elevated neutrophil influx and by changes in CD8+ T cell cytotoxic capacity. Importantly, the development of SIRS in injured humans, is likewise associated with disordered purinergic signalling and CD8 T cell dysfunction. CONCLUSION: These studies in experimental models and in a cohort of trauma patients reveal important associations between extracellular mitochondria, aberrant purinergic signalling and immune dysfunction. These pathogenic factors with immune exhaustion are linked to SIRS and could be targeted therapeutically.


Assuntos
Antígenos CD , Linfócitos T CD8-Positivos , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Mitocôndrias , Síndrome de Resposta Inflamatória Sistêmica/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 41(6): 1915-1927, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33853347
4.
J Immunol ; 202(10): 2982-2990, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30952817

RESUMO

Biliverdin reductase (BVR)-A is a pleotropic enzyme converting biliverdin to bilirubin and a signaling molecule that has cytoprotective and immunomodulatory effects. We recently showed that biliverdin inhibits the expression of complement activation fragment 5a receptor one (C5aR1) in RAW 264.7 macrophages. In this study, we investigated the role of BVR-A in determining macrophage inflammatory phenotype and function via regulation of C5aR1. We assessed expression of C5aR1, M1-like macrophage markers, including chemokines (RANTES, IP-10), as well as chemotaxis in response to LPS and C5a in bone marrow-derived macrophages from BVR fl/fl and LysM-Cre:BVR fl / fl mice (conditional deletion of BVR-A in myeloid cells). In response to LPS, macrophages isolated from LysM-Cre:BVR fl/fl showed significantly elevated levels of C5aR1 as well as chemokines (RANTES, IP10) but not proinflammatory markers, such as iNOS and TNF. An increase in C5aR1 expression was also observed in peritoneal macrophages and several tissues from LysM-Cre:BVR fl/fl mice in a model of endotoxemia. In addition, knockdown of BVR-A resulted in enhanced macrophage chemotaxis toward C5a. Part of the effects of BVR-A deletion on chemotaxis and RANTES expression were blocked in the presence of a C5aR1 neutralizing Ab, confirming the role of C5a-C5aR1 signaling in mediating the effects of BVR. In summary, BVR-A plays an important role in regulating macrophage chemotaxis in response to C5a via modulation of C5aR1 expression. In addition, macrophages lacking BVR-A are characterized by the expression of M1 polarization-associated chemokines, the levels of which depend in part on C5aR1 signaling.


Assuntos
Quimiocinas/imunologia , Quimiotaxia/imunologia , Complemento C5a/imunologia , Macrófagos/imunologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/imunologia , Receptor da Anafilatoxina C5a/imunologia , Transdução de Sinais/imunologia , Animais , Quimiocinas/genética , Quimiotaxia/genética , Complemento C5a/genética , Deleção de Genes , Macrófagos/citologia , Camundongos , Camundongos Transgênicos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais/genética
5.
Proc Natl Acad Sci U S A ; 115(10): E2302-E2310, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463714

RESUMO

Ischemia reperfusion injury (IRI) is the predominant tissue insult associated with organ transplantation. Treatment with carbon monoxide (CO) modulates the innate immune response associated with IRI and accelerates tissue recovery. The mechanism has been primarily descriptive and ascribed to the ability of CO to influence inflammation, cell death, and repair. In a model of bilateral kidney IRI in mice, we elucidate an intricate relationship between CO and purinergic signaling involving increased CD39 ectonucleotidase expression, decreased expression of Adora1, with concomitant increased expression of Adora2a/2b. This response is linked to a >20-fold increase in expression of the circadian rhythm protein Period 2 (Per2) and a fivefold increase in serum erythropoietin (EPO), both of which contribute to abrogation of kidney IRI. CO is ineffective against IRI in Cd39-/- and Per2-/- mice or in the presence of a neutralizing antibody to EPO. Collectively, these data elucidate a cellular signaling mechanism whereby CO modulates purinergic responses and circadian rhythm to protect against injury. Moreover, these effects involve CD39- and adenosinergic-dependent stabilization of Per2. As CO also increases serum EPO levels in human volunteers, these findings continue to support therapeutic use of CO to treat IRI in association with organ transplantation, stroke, and myocardial infarction.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Monóxido de Carbono/administração & dosagem , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Proteínas Circadianas Period/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Antígenos CD/genética , Apirase/genética , Modelos Animais de Doenças , Humanos , Rim/irrigação sanguínea , Rim/metabolismo , Rim/fisiopatologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
6.
Med Res Rev ; 40(4): 1147-1177, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31820474

RESUMO

Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Monóxido de Carbono/uso terapêutico , Injúria Renal Aguda/etiologia , Animais , Monóxido de Carbono/administração & dosagem , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Humanos
7.
Ann Surg ; 272(4): 604-610, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32932316

RESUMO

OBJECTIVES: Sepsis and sterile both release "danger signals' that induce the systemic inflammatory response syndrome (SIRS). So differentiating infection from SIRS can be challenging. Precision diagnostic assays could limit unnecessary antibiotic use, improving outcomes. METHODS: After surveying human leukocyte cytokine production responses to sterile damage-associated molecular patterns (DAMPs), bacterial pathogen-associated molecular patterns, and bacteria we created a multiplex assay for 31 cytokines. We then studied plasma from patients with bacteremia, septic shock, "severe sepsis," or trauma (ISS ≥15 with circulating DAMPs) as well as controls. Infections were adjudicated based on post-hospitalization review. Plasma was studied in infection and injury using univariate and multivariate means to determine how such multiplex assays could best distinguish infective from noninfective SIRS. RESULTS: Infected patients had high plasma interleukin (IL)-6, IL-1α, and triggering receptor expressed on myeloid cells-1 (TREM-1) compared to controls [false discovery rates (FDR) <0.01, <0.01, <0.0001]. Conversely, injury suppressed many mediators including MDC (FDR <0.0001), TREM-1 (FDR <0.001), IP-10 (FDR <0.01), MCP-3 (FDR <0.05), FLT3L (FDR <0.05), Tweak, (FDR <0.05), GRO-α (FDR <0.05), and ENA-78 (FDR <0.05). In univariate studies, analyte overlap between clinical groups prevented clinical relevance. Multivariate models discriminated injury and infection much better, with the 2-group random-forest model classifying 11/11 injury and 28/29 infection patients correctly in out-of-bag validation. CONCLUSIONS: Circulating cytokines in traumatic SIRS differ markedly from those in health or sepsis. Variability limits the accuracy of single-mediator assays but machine learning based on multiplexed plasma assays revealed distinct patterns in sepsis- and injury-related SIRS. Defining biomarker release patterns that distinguish specific SIRS populations might allow decreased antibiotic use in those clinical situations. Large prospective studies are needed to validate and operationalize this approach.


Assuntos
Citocinas/sangue , Sepse/sangue , Sepse/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Relatórios Anuais como Assunto , Diagnóstico Diferencial , Cirurgia Geral , Testes Hematológicos/métodos , Humanos , Estudos Prospectivos , Sepse/imunologia , Sociedades Médicas , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Estados Unidos
8.
Crit Care Med ; 48(2): e123-e132, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31939811

RESUMO

OBJECTIVES: Trauma predisposes to systemic sterile inflammation (systemic inflammatory response syndrome) as well as infection, but the mechanisms linking injury to infection are poorly understood. Mitochondrial debris contains formyl peptides. These bind formyl peptide receptor-1, trafficking neutrophils to wounds, initiating systemic inflammatory response syndrome, and wound healing. Bacterial formyl peptides, however, also attract neutrophils via formyl peptide receptor-1. Thus, mitochondrial formyl peptides might suppress neutrophils antimicrobial function. Also, formyl peptide receptor-1 blockade used to mitigate systemic inflammatory response syndrome might predispose to sepsis. We examined how mitochondrial formyl peptides impact neutrophils functions contributing to antimicrobial responses and how formyl peptide receptor-1 antagonists affect those functions. DESIGN: Prospective study of human and murine neutrophils and clinical cohort analysis. SETTING: University research laboratory and level 1 trauma center. PATIENTS: Trauma patients, volunteer controls. ANIMAL SUBJECTS: C57Bl/6, formyl peptide receptor-1, and formyl peptide receptor-2 knockout mice. INTERVENTIONS: Human and murine neutrophils functions were activated with autologous mitochondrial debris, mitochondrial formyl peptides, or bacterial formyl peptides followed by chemokines or leukotrienes. The experiments were repeated using formyl peptide receptor-1 antagonist cyclosporin H, "designer" human formyl peptide receptor-1 antagonists (POL7178 and POL7200), or anti-formyl peptide receptor-1 antibodies. Mouse injury/lung infection model was used to evaluate effect of formyl peptide receptor-1 inhibition. MEASUREMENTS AND MAIN RESULTS: Human neutrophils cytosolic calcium, chemotaxis, reactive oxygen species production, and phagocytosis were studied before and after exposure to mitochondrial debris, mitochondrial formyl peptides, and bacterial formyl peptides. Mitochondrial formyl peptide and bacterial formyl peptides had similar effects on neutrophils. Responses to chemokines and leukotrienes were suppressed by prior exposure to formyl peptides. POL7200 and POL7178 were specific antagonists of human formyl peptide receptor-1 and more effective than cyclosporin H or anti-formyl peptide receptor-1 antibodies. Formyl peptides inhibited mouse neutrophils responses to chemokines only if formyl peptide receptor-1 was present. Formyl peptide receptor-1 blockade did not inhibit neutrophils bacterial phagocytosis or reactive oxygen species production. Cyclosporin H increased bacterial clearance in lungs after injury. CONCLUSIONS: Formyl peptides both activate and desensitize neutrophils. Formyl peptide receptor-1 blockade prevents desensitization, potentially both diminishing systemic inflammatory response syndrome and protecting the host against secondary infection after tissue trauma or primary infection.


Assuntos
Proteínas Mitocondriais/imunologia , Ativação de Neutrófilo/imunologia , Receptores de Formil Peptídeo/antagonistas & inibidores , Animais , Ciclosporina/farmacologia , Humanos , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções Respiratórias/fisiopatologia
10.
J Immunol ; 199(4): 1453-1464, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28674181

RESUMO

Robust lung inflammation is one of the prominent features in the pathogenesis of acute lung injury (ALI). Macrophage migration and recruitment are often seen at the early stage of lung inflammatory responses to noxious stimuli. Using an acid inhalation-induced lung injury model, we explored the mechanisms by which acid exposure initiates macrophage recruitment and migration during development of ALI. The lung epithelium comprises a large surface area and functions as a first-line defense against noxious insults. We found that acid exposure induced a remarkable microvesicle (MV) release from lung epithelium as detected in bronchoalveolar lavage fluid. Significantly elevated RNA, rather than protein, was found in these epithelium-derived MVs after acid and included several highly elevated microRNAs, including microRNA (miR)-17 and miR-221. Acid-induced epithelial MV release promoted macrophage migration in vitro and recruitment into the lung in vivo and required, in part, MV shuttling of miR-17 and/or miR-221. Mechanistically, acid-induced epithelial MV miR-17/221 promoted ß1 integrin recycling and presentation back onto the surface of macrophages, in part via a Rab11-mediated pathway. Integrin ß1 is known to play an essential role in regulating macrophage migration. Taken together, acid-induced ALI results in epithelial MV shuttling of miR-17/221 that in turn modulates macrophage ß1 integrin recycling, promoting macrophage recruitment and ultimately contributing to lung inflammation.


Assuntos
Lesão Pulmonar Aguda/imunologia , Micropartículas Derivadas de Células , Integrina beta1/metabolismo , Pulmão/citologia , Macrófagos/fisiologia , MicroRNAs/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Movimento Celular , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/fisiologia , Ácido Clorídrico/administração & dosagem , Inflamação/imunologia , Integrina beta1/imunologia , Pulmão/patologia , Pulmão/fisiologia , Macrófagos/imunologia , Camundongos , MicroRNAs/isolamento & purificação
11.
J Autoimmun ; 94: 122-133, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30098863

RESUMO

In Crohn's disease, pathogenic Th17-cells express low levels of CD39 ectonucleotidase and are refractory to the immunosuppressive effects of unconjugated bilirubin (UCB), an endogenous ligand for aryl-hydrocarbon-receptor (AhR). This resistance to AhR ligation might be associated with alterations in responses to hypoxia. Limited exposure to hypoxia appears beneficial in acute tissue injury. However, in protracted inflammation, hypoxemia may paradoxically result in Th17-cell activation. We report here that in vitro exposure of Th17-cells from Crohn's disease patients to hypoxia limits responsiveness to AhR stimulation by UCB, as reflected by lower CD39 levels. Blockade of hypoxia-inducible-factor-1alpha (HIF-1α) upregulates CD39 and favors Th17-cell regulatory responses. Resistance of Th17-cells to AhR signaling results, in part, from HIF-1α-dependent induction of ATP-binding cassette (ABC) transporters: multidrug-resistance-protein-1 (MDR1) and multidrug-resistance-associated-protein-4 (MRP4). Increased ABC transporters promote efflux of suppressive AhR ligands, such as UCB, from Th17-cells. Inhibition of MDR1, MRP4 and/or HIF-1α with ritonavir (RTV) reconstitutes AhR function in Th17-cells, enhancing therapeutic effects of UCB in dextran-sulfate-sodium-induced experimental colitis. Deleterious effects of hypoxia on Th17-cells in Crohn's disease can be ameliorated either by inhibiting HIF-1α or by suppressing ABC transporters to increase UCB availability as an AhR substrate. Targeting HIF-1α-ABC transporters could provide innovative therapeutic pathways for IBD.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Colite/imunologia , Doença de Crohn/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/imunologia , Animais , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Apirase/genética , Apirase/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bilirrubina/imunologia , Bilirrubina/farmacologia , Hipóxia Celular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Doença de Crohn/genética , Doença de Crohn/patologia , Sulfato de Dextrana/administração & dosagem , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa/imunologia , Mucosa/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Cultura Primária de Células , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Receptores de Hidrocarboneto Arílico/genética , Ritonavir/farmacologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/patologia
12.
Circ Res ; 118(12): 1940-1959, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283533

RESUMO

Understanding the processes governing the ability of the heart to repair and regenerate after injury is crucial for developing translational medical solutions. New avenues of exploration include cardiac cell therapy and cellular reprogramming targeting cell death and regeneration. An attractive possibility is the exploitation of cytoprotective genes that exist solely for self-preservation processes and serve to promote and support cell survival. Although the antioxidant and heat-shock proteins are included in this category, one enzyme that has received a great deal of attention as a master protective sentinel is heme oxygenase-1 (HO-1), the rate-limiting step in the catabolism of heme into the bioactive signaling molecules carbon monoxide, biliverdin, and iron. The remarkable cardioprotective effects ascribed to heme oxygenase-1 are best evidenced by its ability to regulate inflammatory processes, cellular signaling, and mitochondrial function ultimately mitigating myocardial tissue injury and the progression of vascular-proliferative disease. We discuss here new insights into the role of heme oxygenase-1 and heme on cardiovascular health, and importantly, how they might be leveraged to promote heart repair after injury.


Assuntos
Monóxido de Carbono/metabolismo , Heme Oxigenase-1/metabolismo , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Animais , Heme Oxigenase-1/genética , Humanos , Mitocôndrias Cardíacas/metabolismo
13.
Heart Lung Circ ; 27(1): 122-129, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28487062

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most frequent complication of surgery performed on cardiopulmonary bypass (CPB) and recent work associates CPB with postoperative inflammation. We have shown that all tissue injury releases mitochondrial damage associated molecular patterns (mtDAMPs) including mitochondrial DNA (mtDNA). This can act as a direct, early activator of neutrophils (PMN), eliciting a systemic inflammatory response syndrome (SIRS) while suppressing PMN function. Neutrophil Extracellular Traps (NETs) are crucial to host defence. They carry out NETosis wherein webs of granule proteins and chromatin trap and kill bacteria. We hypothesised that surgery performed on CPB releases mtDAMPs into the circulation. Molecular patterns thus mobilised during CPB might then participate in the pathogenesis of SIRS and predict postoperative complications like AF [1]. METHODS: We prospectively studied 16 patients undergoing elective operations on CPB. Blood was sampled preoperatively, at the end of CPB and on days 1-2 postoperatively. Plasma samples were analysed for mtDNA. Neutrophil IL-6 gene expression was studied to assess induction of SIRS. Neutrophils were also assayed for the presence of neutrophil extracellular traps (NETs/NETosis). These biologic findings were then correlated to clinical data and compared in patients with and without postoperative AF (POAF). RESULTS: Mitochondrial DNA was significantly elevated following CPB (six-fold increase post-CPB, p=0.008 and five-fold increase days 1-2, p=0.02). Patients with POAF showed greater increases in mtDNA post-CPB than those without. Postoperative AF was seen in all patients with a ≥2-fold increase of mtDNA (p=0.037 vs. <2-fold). Neutrophil IL-6 gene transcription increased postoperatively demonstrating SIRS that was greatest days 1-2 (p=0.039). Neutrophil extracellular trap (NET) formation was markedly suppressed in the post-CPB state. CONCLUSION: Mitochondrial DNA is released by CPB surgery and is associated with POAF. IL-6 gene expression increases after CPB, demonstrating the evolution of postoperative SIRS. Lastly, cardiac surgery on CPB also suppressed PMN NETosis. Taken together, our data suggest that mtDNA released during surgery on CPB, may be involved in the pathogenesis of SIRS and related postoperative inflammatory events like POAF and infections. Mitochondrial DNA may therefore prove to be an early biomarker for postoperative complications with the degree of association to be determined in appropriately sized studies. If mtDNA is directly involved in cardiac inflammation, mtDNA-induced toll-like receptor-9 (TLR9) signalling could also be targeted therapeutically.


Assuntos
Fibrilação Atrial/sangue , Ponte Cardiopulmonar/efeitos adversos , DNA Mitocondrial/sangue , Mitocôndrias/genética , Complicações Pós-Operatórias , Idoso , Fibrilação Atrial/genética , Biomarcadores/sangue , DNA Mitocondrial/genética , Feminino , Cardiopatias/cirurgia , Humanos , Masculino , Mitocôndrias/metabolismo , Reação em Cadeia da Polimerase , Estudos Prospectivos
14.
Stroke ; 48(9): 2565-2573, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28747460

RESUMO

BACKGROUND AND PURPOSE: Subarachnoid hemorrhage (SAH) is associated with a temporal pattern of stroke incidence. We hypothesized that natural oscillations in gene expression controlling circadian rhythm affect the severity of neuronal injury. We moreover predict that heme oxygenase-1 (HO-1/Hmox1) and its product carbon monoxide (CO) contribute to the restoration of rhythm and neuroprotection. METHODS: Murine SAH model was used where blood was injected at various time points of the circadian cycle. Readouts included circadian clock gene expression, locomotor activity, vasospasm, neuroinflammatory markers, and apoptosis. In addition, cerebrospinal fluid and peripheral blood leukocytes from SAH patients and controls were analyzed for clock gene expression. RESULTS: Significant elevations in the clock genes Per-1, Per-2, and NPAS-2 were observed in the hippocampus, cortex, and suprachiasmatic nucleus in mice subjected to SAH at zeitgeber time (ZT) 12 when compared with ZT2. Clock gene expression amplitude correlated with basal expression of HO-1, which was also significantly greater at ZT12. SAH animals showed a significant reduction in cerebral vasospasm, neuronal apoptosis, and microglial activation at ZT12 compared with ZT2. In animals with myeloid-specific HO-1 deletion (Lyz-Cre-Hmox1fl/fl ), Per-1, Per-2, and NPAS-2 expression was reduced in the suprachiasmatic nucleus, which correlated with increased injury. Treatment with low-dose CO rescued Lyz-Cre-Hmox1fl/fl mice, restored Per-1, Per-2, and NPAS-2 expression, and reduced neuronal apoptosis. CONCLUSIONS: Clock gene expression regulates, in part, the severity of SAH and requires myeloid HO-1 activity to clear the erythrocyte burden and inhibit neuronal apoptosis. Exposure to CO rescues the loss of HO-1 and thus merits further investigation in patients with SAH.


Assuntos
Monóxido de Carbono/metabolismo , Ritmo Circadiano/genética , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Proteínas de Membrana/genética , Hemorragia Subaracnóidea/genética , Fatores de Transcrição ARNTL/genética , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas CLOCK/genética , Líquido Cefalorraquidiano/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Imuno-Histoquímica , Inflamação , Leucócitos/metabolismo , Locomoção , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas Circadianas Period/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Núcleo Supraquiasmático/metabolismo , Vasoespasmo Intracraniano
15.
Am J Hematol ; 92(6): 569-582, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28378932

RESUMO

Sickle Cell Disease (SCD) is a painful, lifelong hemoglobinopathy inherited as a missense point mutation in the hemoglobin (Hb) beta-globin gene. This disease has significant impact on quality of life and mortality, thus a substantial medical need exists to reduce the vaso-occlusive crises which underlie the pathophysiology of the disease. The concept that a gaseous molecule may exert biological function has been well known for over one hundred years. Carbon monoxide (CO), although studied in SCD for over 50 years, has recently emerged as a powerful cytoprotective biological response modifier capable of regulating a host of physiologic and therapeutic processes that, at low concentrations, exerts key physiological functions in various models of tissue inflammation and injury. CO is physiologically generated by the metabolism of heme by the heme oxygenase enzymes and is measurable in blood. A substantial amount of preclinical and clinical data with CO have been generated, which provide compelling support for CO as a potential therapeutic in a number of pathological conditions. Data underlying the therapeutic mechanisms of CO, including in SCD, have been generated by a plethora of in vitro and preclinical studies including multiple SCD mouse models. These data show CO to have key signaling impacts on a host of metallo-enzymes as well as key modulating genes that in sum, result in significant anti-inflammatory, anti-oxidant and anti-apoptotic effects as well as vasodilation and anti-adhesion of cells to the endothelium resulting in preservation of vascular flow. CO may also have a role as an anti-polymerization HbS agent. In addition, considerable scientific data in the non-SCD literature provide evidence for a beneficial impact of CO on cerebrovascular complications, suggesting that in SCD, CO could potentially limit these highly problematic neurologic outcomes. Research is needed and hopefully forthcoming, to carefully elucidate the safety and benefits of this potential therapy across the age spectrum of patients impacted by the host of pathophysiological complications of this devastating disease.


Assuntos
Anemia Falciforme/complicações , Anemia Falciforme/metabolismo , Monóxido de Carbono/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Doenças Vasculares/etiologia , Doenças Vasculares/prevenção & controle , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Monóxido de Carbono/administração & dosagem , Monóxido de Carbono/efeitos adversos , Monóxido de Carbono/sangue , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Heme Oxigenase (Desciclizante)/sangue , Hemoglobinas/química , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Transdução de Sinais , Resultado do Tratamento
16.
Microbiol Immunol ; 59(8): 452-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26146866

RESUMO

Induction of mammalian heme oxygenase (HO)-1 and exposure of animals to carbon monoxide (CO) ameliorates experimental colitis. When enteric bacteria, including Escherichia coli, are exposed to low iron conditions, they express an HO-like enzyme, chuS, and metabolize heme into iron, biliverdin and CO. Given the abundance of enteric bacteria residing in the intestinal lumen, our postulate was that commensal intestinal bacteria may be a significant source of CO and those that express chuS and other Ho-like molecules suppress inflammatory immune responses through release of CO. According to real-time PCR, exposure of mice to CO results in changes in enteric bacterial composition and increases E. coli 16S and chuS DNA. Moreover, the severity of experimental colitis correlates positively with E. coli chuS expression in IL-10 deficient mice. To explore functional roles, E. coli were genetically modified to overexpress chuS or the chuS gene was deleted. Co-culture of chuS-overexpressing E. coli with bone marrow-derived macrophages resulted in less IL-12p40 and greater IL-10 secretion than in wild-type or chuS-deficient E. coli. Mice infected with chuS-overexpressing E. coli have more hepatic CO and less serum IL-12 p40 than mice infected with chuS-deficient E. coli. Thus, CO alters the composition of the commensal intestinal microbiota and expands populations of E. coli that harbor the chuS gene. These bacteria are capable of attenuating innate immune responses through expression of chuS. Bacterial HO-like molecules and bacteria-derived CO may represent novel targets for therapeutic intervention in inflammatory conditions.


Assuntos
Escherichia coli/enzimologia , Escherichia coli/imunologia , Heme Oxigenase (Desciclizante)/imunologia , Heme Oxigenase (Desciclizante)/metabolismo , Evasão da Resposta Imune , Imunidade Inata , Animais , Monóxido de Carbono/metabolismo , Células Cultivadas , Técnicas de Cocultura , DNA Bacteriano/genética , DNA Ribossômico/genética , Escherichia coli/metabolismo , Deleção de Genes , Expressão Gênica , Heme Oxigenase (Desciclizante)/genética , Interleucina-10/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética
17.
J Immunol ; 191(5): 2089-95, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23872052

RESUMO

We hypothesized B cells are involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a progressive, restrictive lung disease that is refractory to glucocorticoids and other nonspecific therapies, and almost invariably lethal. Accordingly, we sought to identify clinically associated B cell-related abnormalities in these patients. Phenotypes of circulating B cells were characterized by flow cytometry. Intrapulmonary processes were evaluated by immunohistochemistry. Plasma B lymphocyte stimulating factor (BLyS) was assayed by ELISA. Circulating B cells of IPF subjects were more Ag differentiated, with greater plasmablast proportions (3.1 ± 0.8%) than in normal controls (1.3 ± 0.3%) (p < 0.03), and the extent of this differentiation correlated with IPF patient lung volumes (r = 0.44, p < 0.03). CD20(+) B cell aggregates, diffuse parenchymal and perivascular immune complexes, and complement depositions were all prevalent in IPF lungs, but much less prominent or absent in normal lungs. Plasma concentrations of BLyS, an obligate factor for B cell survival and differentiation, were significantly greater (p < 0.0001) in 110 IPF (2.05 ± 0.05 ng/ml) than among 53 normal (1.40 ± 0.04 ng/ml) and 90 chronic obstructive pulmonary disease subjects (1.59 ± 0.05 ng/ml). BLyS levels were uniquely correlated among IPF patients with pulmonary artery pressures (r = 0.58, p < 0.0001). The 25% of IPF subjects with the greatest BLyS values also had diminished 1-y survival (46 ± 11%), compared with those with lesser BLyS concentrations (81 ± 5%) (hazard ratio = 4.0, 95% confidence interval = 1.8-8.7, p = 0.0002). Abnormalities of B cells and BLyS are common in IPF patients, and highly associated with disease manifestations and patient outcomes. These findings have implications regarding IPF pathogenesis and illuminate the potential for novel treatment regimens that specifically target B cells in patients with this lung disease.


Assuntos
Fator Ativador de Células B/sangue , Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular , Fibrose Pulmonar Idiopática/imunologia , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Fibrose Pulmonar Idiopática/sangue , Fibrose Pulmonar Idiopática/patologia , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade
18.
Curr Opin Organ Transplant ; 20(1): 8-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25563986

RESUMO

PURPOSE OF REVIEW: To update knowledge concerning the cause and consequences of the detrimental forms of innate immunity that inevitably occurs in peritransplant period tissue and cellular transplants. In addition, we review the information that a newly discovered, engraftment-promoting, and tolerance-inducing macrophage population is identified and characterized. RECENT FINDINGS: The allograft response mounted by adaptive immune cells is shaped by innate immunity. The early allograft response is uniquely intense as a result of activation of the innate immune response created by ischemia reperfusion injury in organ transplants, delayed revascularization of cell transplants, and hypoxia. Inflammation is created by both cellular 'debris' and cytokines. However, a newly discovered prominent, albeit fragile, tissue-resident, noninvasive, and immunoregulatory macrophage promotes engraftment and tolerance. The role of intracellular 'debris' as well as inflammation in evoking detrimental rejection-provoking peritransplant inflammation is emphasized as well as characterization of a prominent and highly immunoregulatory albeit fragile macrophage population that is tissue-resident and does not circulate is characterized. SUMMARY: Opportunity lies in the ability to rein in detrimental peri-transplant inflammation and in the ability to promote the longevity of a subpopulation of highly potent tissue-resident immunoregulatory macrophages.


Assuntos
Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Transplante de Órgãos , Aloenxertos , Animais , Humanos
19.
Gastroenterology ; 144(4): 789-98, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23266559

RESUMO

BACKGROUND & AIMS: Heme oxygenase-1 (HO-1) and its metabolic by-product, carbon monoxide (CO), protect against intestinal inflammation in experimental models of colitis, but little is known about their intestinal immune mechanisms. We investigated the interactions among CO, HO-1, and the enteric microbiota in mice and zebrafish. METHODS: Germ-free, wild-type, and interleukin (Il)10(-/-) mice and germ-free zebrafish embryos were colonized with specific pathogen-free (SPF) microbiota. Germ-free or SPF-raised wild-type and Il10(-/-) mice were given intraperitoneal injections of cobalt(III) protoporphyrin IX chloride (CoPP), which up-regulates HO-1, the CO-releasing molecule Alfama-186, or saline (control). Colitis was induced in wild-type mice housed in SPF conditions by infection with Salmonella typhimurium. RESULTS: In colons of germ-free, wild-type mice, SPF microbiota induced production of HO-1 via activation of nuclear factor erythroid 2-related factor 2-, IL-10-, and Toll-like receptor-dependent pathways; similar observations were made in zebrafish. SPF microbiota did not induce HO-1 in colons of germ-free Il10(-/-) mice. Administration of CoPP to Il10(-/-) mice before transition from germ-free to SPF conditions reduced their development of colitis. In Il10(-/-) mice, CO and CoPP reduced levels of enteric bacterial genomic DNA in mesenteric lymph nodes. In mice with S typhimurium-induced enterocolitis, CoPP reduced the numbers of live S typhimurium recovered from the lamina propria, mesenteric lymph nodes, spleen, and liver. Knockdown of HO-1 in mouse macrophages impaired their bactericidal activity against E coli, E faecalis, and S typhimurium, whereas exposure to CO or overexpression of HO-1 increased their bactericidal activity. HO-1 induction and CO increased acidification of phagolysosomes. CONCLUSIONS: Colonic HO-1 prevents colonic inflammation in mice. HO-1 is induced by the enteric microbiota and its homeostatic function is mediated, in part, by promoting bactericidal activities of macrophages.


Assuntos
Translocação Bacteriana/fisiologia , Monóxido de Carbono/farmacologia , Colite/prevenção & controle , Heme Oxigenase-1/metabolismo , Salmonella typhimurium/fisiologia , Animais , Translocação Bacteriana/efeitos dos fármacos , Western Blotting , Colite/tratamento farmacológico , Colite/microbiologia , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Gentamicinas/farmacologia , Heme Oxigenase-1/biossíntese , Macrófagos/citologia , Macrófagos/fisiologia , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real
20.
Biochem Biophys Res Commun ; 449(1): 94-9, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24814708

RESUMO

Macrophages play a crucial role in the maintenance and resolution of inflammation and express a number of pro- and anti-inflammatory molecules in response to stressors. Among them, the complement receptor 5a (C5aR) plays an integral role in the development of inflammatory disorders. Biliverdin and bilirubin, products of heme catabolism, exert anti-inflammatory effects and inhibit complement activation. Here, we define the effects of biliverdin on C5aR expression in macrophages and the roles of Akt and mammalian target of rapamycin (mTOR) in these responses. Biliverdin administration inhibited lipopolysaccharide (LPS)-induced C5aR expression (without altering basal expression), an effect partially blocked by rapamycin, an inhibitor of mTOR signaling. Biliverdin also reduced LPS-dependent expression of the pro-inflammatory cytokines TNF-α and IL-6. Collectively, these data indicate that biliverdin regulates LPS-mediated expression of C5aR via the mTOR pathway, revealing an additional mechanism underlying biliverdin's anti-inflammatory effects.


Assuntos
Biliverdina/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular , Endotoxinas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Receptor da Anafilatoxina C5a/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA