Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mass Spectrom ; 52(12): 837-847, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28885748

RESUMO

Polychlorinated biphenyls (PCBs) exist as 209 congeners, consisting of biphenyl molecules, where the number and substitution positions of halogen atoms are known to affect industrial uses, environmental transport mechanisms, distribution, fate, and toxicity. The complexity of the problem requires accurate physicochemical studies of an increasing number of congeners in order to understand the environmental and biological processes at play. This work presents a systematic study on the thermodynamic and kinetic properties of PCBs by quadrupole ion trap mass spectrometry. A clear relationship between structure and behavior of PCBs in mass spectrometry experiments has been observed. Overall data demonstrate that di-ortho congeners show lower thermodynamic stability and higher fragmentation rate than non/mono-ortho. Congeners follow different fragmentation mechanisms according to the number of chlorine atoms in ortho position of the biphenyl system. Experimental kinetic curves of mono/non-ortho and di-ortho congeners show a strong similarity with classical first-order kinetics curves; in particular, di-ortho congeners follow a first-order consecutive reaction, while mono/non-ortho follow a first-order parallel reaction. For each studied congener, the kinetic constant of reaction (fragmentation) has been determined. Data support environmental levels and biochemical transformations described in literature. The general picture of the PCB behavior inside a quadrupole ion trap provides the basis for the development of reliable and cost-effective analytical methods to the determination of ultra-low level trace of PCB congeners.

2.
Environ Sci Pollut Res Int ; 23(9): 8770-80, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26805927

RESUMO

Worldwide polychlorinated biphenyls (PCBs) pollution is due to complex mixtures with high number of congeners, making the determination of total PCBs in the environment an open challenge. Because the bulk of PCBs production was made of Aroclor mixtures, this analysis is usually faced by the empirical mixture identification via visual inspection of the chromatogram. However, the identification reliability is questionable, as patterns in real samples are strongly affected by the frequent occurrence of more than one mixture. Our approach is based on the determination of a limited number of congeners chosen to enable objective criteria for Aroclor identification, summing up the advantages of congener-specific analysis with the ones of total PCBs determination. A quantitative relationship is established between congeners and any single mixture, or mixtures combination, leading to the identification of the actual contamination composition. The approach, due to its generality, allows the use of different sets of congeners and any technical mixture, including the non-Aroclor ones. The results confirm that PCB environmental pollution in northern Italy is based on Aroclor. Our methodology represents an important tool to understand the source and fate of the PCBs contamination.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/estatística & dados numéricos , Bifenilos Policlorados/análise , Arocloros/análise , Poluição Ambiental/análise , Itália , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA