Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Annu Rev Cell Dev Biol ; 38: 49-74, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35512258

RESUMO

Cilia and mitotic spindles are microtubule (MT)-based, macromolecular machines that consecutively assemble and disassemble during interphase and M phase of the cell cycle, respectively, and play fundamental roles in how eukaryotic cells swim through a fluid, sense their environment, and divide to reproduce themselves. The formation and function of these structures depend on several types of cytoskeletal motors, notably MT-based kinesins and dyneins, supplemented by actin-based myosins, which may function independently or collaboratively during specific steps in the pathway of mitosis or ciliogenesis. System-specific differences in these pathways occur because, instead of conforming to a simple one motor-one function rule, ciliary and mitotic motors can be deployed differently by different cell types. This reflects the well-known influence of natural selection on basic molecular processes, creating diversity at subcellular scales. Here we review our current understanding of motor function and cooperation during the assembly-disassembly, maintenance, and functions of cilia and mitotic spindles.


Assuntos
Dineínas , Cinesinas , Actinas/metabolismo , Dineínas/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Mitose , Miosinas/metabolismo , Fuso Acromático/metabolismo
2.
EMBO J ; 43(13): 2606-2635, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806659

RESUMO

Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans. Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Cinesinas , Neuroglia , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuroglia/metabolismo , Cílios/metabolismo , Neurônios/metabolismo , Mutação , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia
3.
EMBO J ; 42(19): e113328, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37641865

RESUMO

Eukaryotic organisms adapt to environmental fluctuations by altering their epigenomic landscapes and transcriptional programs. Nucleosomal histones carry vital epigenetic information and regulate gene expression, yet the mechanisms underlying chromatin-bound histone exchange remain elusive. Here, we found that histone H2Bs are globally degraded in Caenorhabditis elegans during starvation. Our genetic screens identified mutations in ubiquitin and ubiquitin-related enzymes that block H2B degradation in starved animals, identifying lysine 31 as the crucial residue for chromatin-bound H2B ubiquitination and elimination. Retention of aberrant nucleosomal H2B increased the association of the FOXO transcription factor DAF-16 with chromatin, generating an ectopic gene expression profile detrimental to animal viability when insulin/IGF signaling was reduced in well-fed animals. Furthermore, we show that the ubiquitin-proteasome system regulates chromosomal histone turnover in human cells. During larval development, C. elegans epidermal cells undergo H2B turnover after fusing with the epithelial syncytium. Thus, histone degradation may be a widespread mechanism governing dynamic changes of the epigenome.


Assuntos
Caenorhabditis elegans , Histonas , Animais , Humanos , Histonas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Cromatina , Ubiquitinação , Ubiquitina/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(25): e2321228121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857399

RESUMO

Ciliary defects are linked to ciliopathies, but impairments in the sensory cilia of Caenorhabditis elegans neurons extend lifespan, a phenomenon with previously unclear mechanisms. Our study reveals that neuronal cilia defects trigger the unfolded protein response of the endoplasmic reticulum (UPRER) within intestinal cells, a process dependent on the insulin/insulin-like growth factor 1 (IGF-1) signaling transcription factor and the release of neuronal signaling molecules. While inhibiting UPRER doesn't alter the lifespan of wild-type worms, it normalizes the extended lifespan of ciliary mutants. Notably, deactivating the cyclic nucleotide-gated (CNG) channel TAX-4 on the ciliary membrane promotes lifespan extension through a UPRER-dependent mechanism. Conversely, constitutive activation of TAX-4 attenuates intestinal UPRER in ciliary mutants. Administering a CNG channel blocker to worm larvae activates intestinal UPRER and increases adult longevity. These findings suggest that ciliary dysfunction in sensory neurons triggers intestinal UPRER, contributing to lifespan extension and implying that transiently inhibiting ciliary channel activity may effectively prolong lifespan.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Longevidade , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Intestinos/citologia , Transdução de Sinais , Neurônios/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(5): e2311936121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38271337

RESUMO

KIF1A, a microtubule-based motor protein responsible for axonal transport, is linked to a group of neurological disorders known as KIF1A-associated neurological disorder (KAND). Current therapeutic options for KAND are limited. Here, we introduced the clinically relevant KIF1A(R11Q) variant into the Caenorhabditis elegans homolog UNC-104, resulting in uncoordinated animal behaviors. Through genetic suppressor screens, we identified intragenic mutations in UNC-104's motor domain that rescued synaptic vesicle localization and coordinated movement. We showed that two suppressor mutations partially recovered motor activity in vitro by counteracting the structural defect caused by R11Q at KIF1A's nucleotide-binding pocket. We found that supplementation with fisetin, a plant flavonol, improved KIF1A(R11Q) worms' movement and morphology. Notably, our biochemical and single-molecule assays revealed that fisetin directly restored the ATPase activity and processive movement of human KIF1A(R11Q) without affecting wild-type KIF1A. These findings suggest fisetin as a potential intervention for enhancing KIF1A(R11Q) activity and alleviating associated defects in KAND.


Assuntos
Cinesinas , Vesículas Sinápticas , Animais , Humanos , Cinesinas/metabolismo , Vesículas Sinápticas/metabolismo , Neurônios/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mutação
6.
Proc Natl Acad Sci U S A ; 120(30): e2303955120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463209

RESUMO

Cilia build distinct subdomains with variable axonemal structures to perform diverse functions in cell motility and signaling. In sensory cilia across species, an axoneme differentiates longitudinally into a middle segment with nine microtubule (MT) doublets and a distal segment with nine MT singlets that extends from the A tubules of the doublets. Here, we study axoneme differentiation in Caenorhabditis elegans by analyzing the flagellar inner junction protein FAP20 and PCRG1 that connect A and B tubules in Chlamydomonas. The nematode CFAP-20 is restricted to the middle segment with doublets, and its loss disconnects A and B tubules. However, PCRG-1 is absent from most sensory cilia, and its deletion does not disrupt cilia. Ectopic introduction of PCRG-1 into cilia generated abnormal MT doublets in the distal segment and reduced intraflagellar transport and animal sensation. Thus, the absence of an inner junction protein prevents B-tubule extension, which contributes to axoneme differentiation and ciliary function.


Assuntos
Axonema , Chlamydomonas , Animais , Axonema/metabolismo , Cílios/metabolismo , Caenorhabditis elegans/genética , Transporte Biológico , Microtúbulos/metabolismo , Flagelos/metabolismo
7.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38318777

RESUMO

MOTIVATION: Protein structure comparison is pivotal for deriving homological relationships, elucidating protein functions, and understanding evolutionary developments. The burgeoning field of in-silico protein structure prediction now yields billions of models with near-experimental accuracy, necessitating sophisticated tools for discerning structural similarities among proteins, particularly when sequence similarity is limited. RESULTS: In this article, we have developed the align distance matrix with scale (ADAMS) pipeline, which synergizes the distance matrix alignment method with the scale-invariant feature transform algorithm, streamlining protein structure comparison on a proteomic scale. Utilizing a computer vision-centric strategy for contrasting disparate distance matrices, ADAMS adeptly alleviates challenges associated with proteins characterized by a high degree of structural flexibility. Our findings indicate that ADAMS achieves a level of performance and accuracy on par with Foldseek, while maintaining similar speed. Crucially, ADAMS overcomes certain limitations of Foldseek in handling structurally flexible proteins, establishing it as an efficacious tool for in-depth protein structure analysis with heightened accuracy. AVAILABILITY: ADAMS can be download and used as a python package from Python Package Index (PyPI): adams · PyPI. Source code and other materials are available from young55775/ADAMS-developing (github.com). An online server is available: Bseek Search Server (cryonet.ai).


Assuntos
Algoritmos , Proteômica , Software , Proteínas/química , Computadores
8.
Biol Cell ; : e2400064, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031999

RESUMO

BACKGROUND INFORMATION: Microtubules serve as integral components in cellular operations such as cell division, intracellular trafficking, and cellular architecture. Composed of tubulin protein subunits, these hollow tubular structures have been increasingly elucidated through advanced cryo-electron microscopy (Cryo-EM), which has unveiled the presence of microtubule inner proteins (MIPs) within the microtubular lumen. RESULTS: In the present investigation, we employ a synergistic approach incorporating high-pressure freezing, cryo-focused ion beam milling, and Cryo-electron tomography (Cryo-ET) to interrogate the in situ architecture of microtubules in Caenorhabditis elegans larvae. Our Cryo-ET assessments across neuronal cilia and diverse tissue types consistently demonstrate the formation of annular configurations within the microtubular lumen. CONCLUSIONS: In concert with recently characterized MIPs, our in situ observations within a living organism corroborate the hypothesis that intricate luminal assemblages exist within microtubule scaffolds. These findings necessitate further exploration into the molecular constituents and functional ramifications of these internal microtubular configurations in both cellular physiology and pathophysiology.

9.
PLoS Genet ; 18(6): e1010223, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35679337

RESUMO

Oncohistone mutations are crucial drivers for tumorigenesis, but how a living organism governs the loss-of-function oncohistone remains unclear. We generated a histone H2B triple knockout (3KO) strain in Caenorhabditis elegans, which decreased the embryonic H2B, disrupted cell divisions, and caused animal sterility. By performing genetic suppressor screens, we uncovered that mutations defective in the histone H3-H4 chaperone UNC-85 restored H2B 3KO fertility by decreasing chromatin H3-H4 levels. RNA interference of other H3-H4 chaperones or H3 or H4 histones also rescued H2B 3KO sterility. We showed that blocking H3-H4 chaperones recovered cell division in C. elegans carrying the oncohistone H2BE74K mutation that distorts the H2B-H4 interface and induces nucleosome instability. Our results indicate that reducing chromatin H3-H4 rescues the dysfunctional H2B in vivo and suggest that inhibiting H3-H4 chaperones may provide an effective therapeutic strategy for treating cancers resulting from loss-of-function H2B oncohistone.


Assuntos
Histonas , Infertilidade , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cromatina/genética , Chaperonas de Histonas/genética , Histonas/genética , Histonas/metabolismo , Nucleossomos
10.
Proc Natl Acad Sci U S A ; 119(18): e2120311119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482917

RESUMO

The antagonistic pleiotropy theory of aging proposes that genes enhancing fitness in early life limit the lifespan, but the molecular evidence remains underexplored. By profiling translatome changes in Caenorhabditis elegans during starvation recovery, we find that an open reading frame (ORF) trl-1 "hidden" within an annotated pseudogene significantly translates upon refeeding. trl-1 mutant animals increase brood sizes but shorten the lifespan and specifically impair germline deficiency­induced longevity. The loss of trl-1 abnormally up-regulates the translation of vitellogenin that produces copious yolk to provision eggs, whereas vitellogenin overexpression is known to reduce the lifespan. We show that the TRL-1 protein undergoes liquid­liquid phase separation (LLPS), through which TRL-1 granules recruit vitellogenin messenger RNA and inhibit its translation. These results indicate that trl-1 functions as an antagonistic pleiotropic gene to regulate the reproduction­longevity tradeoff by optimizing nutrient production for the next generation.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Pleiotropia Genética , Longevidade/genética , Reprodução/genética
11.
Proc Natl Acad Sci U S A ; 119(34): e2207134119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969738

RESUMO

Cilia are microtubule-based organelles that power cell motility and regulate sensation and signaling, and abnormal ciliary structure and function cause various ciliopathies. Cilium formation and maintenance requires intraflagellar transport (IFT), during which the kinesin-2 family motor proteins ferry IFT particles carrying axonemal precursors such as tubulins into cilia. Tubulin dimers are loaded to IFT machinery through an interaction between tubulin and the IFT-74/81 module; however, little is known of how tubulins are unloaded when arriving at the ciliary tip. Here, we show that the ciliary kinase DYF-5/MAK phosphorylates multiple sites within the tubulin-binding module of IFT-74, reducing the tubulin-binding affinity of IFT-74/81 approximately sixfold. Ablation or constitutive activation of IFT-74 phosphorylation abnormally elongates or shortens sensory cilia in Caenorhabditis elegans neurons. We propose that DYF-5/MAK-dependent phosphorylation plays a fundamental role in ciliogenesis by regulating tubulin unloading.


Assuntos
Caenorhabditis elegans/metabolismo , Cílios , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Fosforilação , Tubulina (Proteína)/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(24): e2122249119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35666862

RESUMO

Microvilli are actin-bundle-supported membrane protrusions essential for absorption, secretion, and sensation. Microvilli defects cause gastrointestinal disorders; however, mechanisms controlling microvilli formation and organization remain unresolved. Here, we study microvilli by vitrifying the Caenorhabditis elegans larvae and mouse intestinal tissues with high-pressure freezing, thinning them with cryo-focused ion-beam milling, followed by cryo-electron tomography and subtomogram averaging. We find that many radial nanometer bristles referred to as nanobristles project from the lateral surface of nematode and mouse microvilli. The C. elegans nanobristles are 37.5 nm long and 4.5 nm wide. Nanobristle formation requires a protocadherin family protein, CDH-8, in C. elegans. The loss of nanobristles in cdh-8 mutants slows down animal growth and ectopically increases the number of Y-shaped microvilli, the putative intermediate structures if microvilli split from tips. Our results reveal a potential role of nanobristles in separating microvilli and suggest that microvilli division may help generate nascent microvilli with uniformity.


Assuntos
Caenorhabditis elegans , Tomografia com Microscopia Eletrônica , Animais , Caenorhabditis elegans/metabolismo , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Congelamento , Camundongos , Microvilosidades/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(31): e2201096119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35895683

RESUMO

Cilium formation and regeneration requires new protein synthesis, but the underlying cytosolic translational reprogramming remains largely unknown. Using ribosome footprinting, we performed global translatome profiling during cilia regeneration in Chlamydomonas and uncovered that flagellar genes undergo an early transcriptional activation but late translational repression. This pattern guided our identification of sphingolipid metabolism enzymes, including serine palmitoyltransferase (SPT), as essential regulators for ciliogenesis. Cryo-electron tomography showed that ceramide loss abnormally increased the membrane-axoneme distance and generated bulged cilia. We found that ceramides interact with intraflagellar transport (IFT) particle proteins that IFT motors transport along axoneme microtubules (MTs), suggesting that ceramide-IFT particle-IFT motor-MT interactions connect the ciliary membrane with the axoneme to form rod-shaped cilia. SPT-deficient vertebrate cells were defective in ciliogenesis, and SPT mutations from patients with hereditary sensory neuropathy disrupted cilia, which could be restored by sphingolipid supplementation. These results reveal a conserved role of sphingolipid in cilium formation and link compromised sphingolipid production with ciliopathies.


Assuntos
Axonema , Chlamydomonas , Cílios , Flagelos , Regeneração , Esfingolipídeos , Axonema/química , Axonema/metabolismo , Ceramidas/metabolismo , Chlamydomonas/fisiologia , Cílios/fisiologia , Flagelos/fisiologia , Transporte Proteico , Esfingolipídeos/metabolismo
14.
EMBO J ; 39(12): e103955, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32338401

RESUMO

Cytoskeletal-based molecular motors produce force perpendicular to their direction of movement. However, it remains unknown whether and why motor proteins generate sidesteps movement along their filamentous tracks in vivo. Using Hessian structured illumination microscopy, we located green fluorescent protein (GFP)-labeled intraflagellar transport (IFT) particles inside sensory cilia of live Caenorhabditis elegans with 3-6-nanometer accuracy and 3.4-ms resolution. We found that IFT particles took sidesteps along axoneme microtubules, demonstrating that IFT motors generate torque in a living animal. Kinesin-II and OSM-3-kinesin collaboratively drive anterograde IFT. We showed that the deletion of kinesin-II, a torque-generating motor protein, reduced sidesteps, whereas the increase of neck flexibility of OSM-3-kinesin upregulated sidesteps. Either increase or decrease of sidesteps of IFT kinesins allowed ciliogenesis to the regular length, but changed IFT speeds, disrupted axonemal ninefold symmetry, and inhibited sensory cilia-dependent animal behaviors. Thus, an optimum level of IFT kinesin sidestepping is associated with the structural and functional fidelity of cilia.


Assuntos
Animais Geneticamente Modificados/metabolismo , Axonema/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Cinesinas/metabolismo , Animais , Animais Geneticamente Modificados/genética , Axonema/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cílios/genética , Cinesinas/genética
15.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34588311

RESUMO

The central spindle spatially and temporally regulates the formation of division plane during cytokinesis in animal cells. The heterotetrameric centralspindlin complex bundles microtubules to assemble the central spindle, the mechanism of which is poorly understood. Here, we determined the crystal structures of the molecular backbone of ZEN-4/CYK-4 centralspindlin from Caenorhabditis elegans, which revealed the detailed mechanism of complex formation. The molecular backbone of centralspindlin has the intrinsic propensity to undergo liquid-liquid phase separation. The condensation of centralspindlin requires two patches of basic residues at ZEN-4 and multiple acidic residues at the intrinsically disordered region of CYK-4, explaining the synergy of the two subunits for the function. These complementary charged residues were critical for the microtubule bundling activity of centralspindlin in vitro and for the assembly of the central spindle in vivo. Together, our findings provide insights into the mechanism of central spindle assembly mediated by centralspindlin through charge-driven macromolecular condensation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Fuso Acromático/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Citocinese/fisiologia , Cinesinas/metabolismo , Microtúbulos/metabolismo
16.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507987

RESUMO

The formation of the branched actin networks is essential for cell polarity, but it remains unclear how the debranching activity of actin filaments contributes to this process. Here, we showed that an evolutionarily conserved coronin family protein, the Caenorhabditis elegans POD-1, debranched the Arp2/3-nucleated actin filaments in vitro. By fluorescence live imaging analysis of the endogenous POD-1 protein, we found that POD-1 colocalized with Arp2/3 at the leading edge of the migrating C. elegans neuroblasts. Conditional mutations of POD-1 in neuroblasts caused aberrant actin assembly, disrupted cell polarity, and impaired cell migration. In C. elegans one-cell-stage embryos, POD-1 and Arp2/3, moved together during cell polarity establishment, and inhibition of POD-1 blocked Arp2/3 motility and affected the polarized cortical flow, leading to symmetric segregation of cell fate determinants. Together, these results indicate that F-actin debranching organizes actin network and cell polarity in migrating neuroblasts and asymmetrically dividing embryos.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Polaridade Celular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Divisão Celular Assimétrica/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Movimento Celular/fisiologia , Proteínas dos Microfilamentos/fisiologia , Células-Tronco Neurais/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(25): 14270-14279, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513699

RESUMO

Directional cell migration involves signaling cascades that stimulate actin assembly at the leading edge, and additional pathways must inhibit actin polymerization at the rear. During neuroblast migration in Caenorhabditis elegans, the transmembrane protein MIG-13/Lrp12 acts through the Arp2/3 nucleation-promoting factors WAVE and WASP to guide the anterior migration. Here we show that a tyrosine kinase, SRC-1, directly phosphorylates MIG-13 and promotes its activity on actin assembly at the leading edge. In GFP knockin animals, SRC-1 and MIG-13 distribute along the entire plasma membrane of migrating cells. We reveal that a receptor-like tyrosine phosphatase, PTP-3, maintains the F-actin polarity during neuroblast migration. Recombinant PTP-3 dephosphorylates SRC-1-dependent MIG-13 phosphorylation in vitro. Importantly, the endogenous PTP-3 accumulates at the rear of the migrating neuroblast, and its extracellular domain is essential for directional cell migration. We provide evidence that the asymmetrically localized tyrosine phosphatase PTP-3 spatially restricts MIG-13/Lrp12 receptor activity in migrating cells.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Movimento Celular/fisiologia , Neurônios/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Polaridade Celular/fisiologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteínas de Membrana/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais
18.
J Cell Sci ; 133(15)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32620698

RESUMO

Perturbation of spectrin-based membrane mechanics causes hereditary elliptocytosis and spinocerebellar ataxia, but the underlying cellular basis of pathogenesis remains unclear. Here, we introduced conserved disease-associated spectrin mutations into the Caenorhabditis elegans genome and studied the contribution of spectrin to neuronal migration and dendrite formation in developing larvae. The loss of spectrin resulted in ectopic actin polymerization outside of the existing front and secondary membrane protrusions, leading to defective neuronal positioning and dendrite morphology in adult animals. Spectrin accumulated in the lateral region and rear of migrating neuroblasts and redistributes from the soma into the newly formed dendrites, indicating that the spectrin-based membrane skeleton is asymmetric and remodels to regulate actin assembly and cell shape during development. We affinity-purified spectrin from C. elegans and showed that its binding partner ankyrin functions with spectrin. Asymmetry and remodeling of the membrane skeleton might enable spatiotemporal modulation of membrane mechanics for distinct developmental events.


Assuntos
Caenorhabditis elegans , Espectrina , Animais , Anquirinas , Caenorhabditis elegans/genética , Neurogênese , Esqueleto , Espectrina/genética
19.
PLoS Biol ; 17(7): e3000369, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31299042

RESUMO

Cilia are remarkable cellular devices that power cell motility and transduce extracellular signals. To assemble a cilium, a cylindrical array of 9 doublet microtubules push out an extension of the plasma membrane. Membrane tension regulates cilium formation; however, molecular pathways that link mechanical stimuli to ciliogenesis are unclear. Using genome editing, we introduced hereditary elliptocytosis (HE)- and spinocerebellar ataxia (SCA)-associated mutations into the Caenorhabditis elegans membrane skeletal protein spectrin. We show that these mutations impair mechanical support for the plasma membrane and change cell shape. RNA sequencing (RNA-seq) analyses of spectrin-mutant animals uncovered a global down-regulation of ciliary gene expression, prompting us to investigate whether spectrin participates in ciliogenesis. Spectrin mutations affect intraflagellar transport (IFT), disrupt axonemal microtubules, and inhibit cilium formation, and the endogenous spectrin periodically distributes along cilia. Mammalian spectrin also localizes in cilia and regulates ciliogenesis. These results define a previously unrecognized yet conserved role of spectrin-based mechanical support for cilium biogenesis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Cílios/genética , Mutação , Espectrina/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Análise de Sequência de RNA , Espectrina/metabolismo
20.
EMBO J ; 36(17): 2553-2566, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28743734

RESUMO

Neuronal cilia that are formed at the dendritic endings of sensory neurons are essential for sensory perception. However, it remains unclear how the centriole-derived basal body is positioned to form a template for cilium formation. Using fluorescence time-lapse microscopy, we show that the centriole translocates from the cell body to the dendrite tip in the Caenorhabditis elegans sensory neurons. The centriolar protein SAS-5 interacts with the dynein light-chain LC8 and conditional mutations of cytoplasmic dynein-1 block centriole translocation and ciliogenesis. The components of the central tube are essential for the biogenesis of centrioles, which later drive ciliogenesis in the dendrite; however, the centriole loses these components at the late stage of centriole translocation and subsequently recruits transition zone and intraflagellar transport proteins. Together, our results provide a comprehensive model of ciliogenesis in sensory neurons and reveal the importance of the dynein-dependent centriole translocation in this process.


Assuntos
Centríolos/fisiologia , Cílios/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA