RESUMO
BACKGROUND: Indoor residual spraying (IRS) is a cornerstone malaria control intervention in Burkina Faso. From 2018 to 2021, non-pyrethroid IRS was implemented annually in two regions of Burkina Faso with distinct malaria transmission patterns, concurrently with annual seasonal malaria chemoprevention (SMC), and a mass insecticide-treated net (ITN) distribution in 2019. METHODS: A retrospective quasi-experimental approach was used to evaluate the impact of the 2018, 2020, and 2021 IRS campaigns on routinely reported confirmed malaria case incidence at health facilities. The 2019 campaign was excluded due to lack of data reporting during a health sector strike. Controlled interrupted time series models were fit to detect changes in level and trend in malaria case incidence rates following each IRS campaign when compared to the baseline period 24-months before IRS. IRS districts Solenzo (Sudano-Sahelien climate), and Kampti (tropical climate) were compared with neighbouring control districts and the analyses were stratified by region. Modelled health facility catchment population estimates based on travel time to health facilities and weighted by non-malaria outpatient visits were used as an offset. The study period encompassed July 2016 through June 2022, excluding July 2018 to June 2019. RESULTS: District-level population and structure coverage achieved by IRS campaigns was greater than 85% in 2018, 2020, and 2021 in Solenzo and Kampti. In Solenzo a significant difference in malaria case incidence rates was detected after the 2018 campaign (IRR = 0.683; 95% CI 0.564-0.827) when compared to the control district. The effect was not detected following the 2020 or 2021 IRS campaigns. In Kampti, estimated malaria incidence rates were between 36 and 38% lower than in the control district following all three IRS campaigns compared to the baseline period. CONCLUSIONS: Implementation of IRS in Kampti, a tropical region of Burkina Faso, appeared to have a consistent significant beneficial impact on malaria case rates. An initial positive impact in Solenzo after the first IRS campaign was not sustained in the successive evaluated IRS campaigns. This study points to a differential effect of IRS in different malaria transmission settings and in combination with ITN and SMC implementation.
Assuntos
Inseticidas , Malária , Controle de Mosquitos , Burkina Faso/epidemiologia , Controle de Mosquitos/estatística & dados numéricos , Malária/prevenção & controle , Malária/epidemiologia , Estudos Retrospectivos , Humanos , Incidência , Mosquiteiros Tratados com Inseticida/estatística & dados numéricosRESUMO
BACKGROUND: The number of malaria cases worldwide has increased, with over 241 million cases and 69,000 more deaths in 2020 compared to 2019. Burkina Faso recorded over 11 million malaria cases in 2020, resulting in nearly 4,000 deaths. The overall incidence of malaria in Burkina Faso has been steadily increasing since 2016. This study investigates the spatiotemporal pattern and environmental and meteorological determinants of malaria incidence in Burkina Faso. METHODS: We described the temporal dynamics of malaria cases by detecting the transmission periods and the evolution trend from 2013 to 2018. We detected hotspots using spatial scan statistics. We assessed different environmental zones through a hierarchical clustering and analyzed the environmental and climatic data to identify their association with malaria incidence at the national and at the district's levels through generalized additive models. We also assessed the time lag between malaria peaks onset and the rainfall at the district level. The environmental and climatic data were synthetized into indicators. RESULTS: The study found that malaria incidence had a seasonal pattern, with high transmission occurring during the rainy seasons. We also found an increasing trend in the incidence. The highest-risk districts for malaria incidence were identified, with a significant expansion of high-risk areas from less than half of the districts in 2013-2014 to nearly 90% of the districts in 2017-2018. We identified three classes of health districts based on environmental and climatic data, with the northern, south-western, and western districts forming separate clusters. Additionally, we found that the time lag between malaria peaks onset and the rainfall at the district level varied from 7 weeks to 17 weeks with a median at 10 weeks. Environmental and climatic factors have been found to be associated with the number of cases both at global and districts levels. CONCLUSION: The study provides important insights into the environmental and spatiotemporal patterns of malaria in Burkina Faso by assessing the spatio temporal dynamics of Malaria cases but also linking those dynamics to the environmental and climatic factors. The findings highlight the importance of targeted control strategies to reduce the burden of malaria in high-risk areas as we found that Malaria epidemiology is complex and linked to many factors that make some regions more at risk than others.