Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(52): e202316495, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37948070

RESUMO

Non-fullerene acceptors have shown great promise for organic solar cells (OSCs). However, challenges in achieving high efficiency molecular system with conformational unicity and effective molecular stacking remain. In this study, we present a new design of non-fused tetrathiophene acceptor R4T-1 via employing the encapsulation of tetrathiophene with macrocyclic ring. The single crystal structure analysis reveals that cyclic alkyl side chains can perfectly encapsulate the central part of molecule and generate a conformational stable and planar molecular backbone. Whereas, the control 4T-5 without the encapsulation restriction displays cis- and twisted conformation. As a result, R4T-1 based OSCs achieved an outstanding power conversion efficiency (PCE) exceeding 15.10 % with a high short-circuit current density (Jsc ) of 25.48 mA/cm2 , which is significantly improved by ≈30 % in relative to that of the control. Our findings demonstrate that the macrocyclic encapsulation strategy could assist fully non-fused electron acceptors (FNEAs) to achieve a high photovoltaic performance and pave a new way for FNEAs design.

2.
Adv Mater ; 36(3): e2308061, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37734746

RESUMO

Though encouraging performance is achieved in small-area organic photovoltaics (OPVs), reducing efficiency loss when evoluted to large-area modules is an important but unsolved issue. Considering that polymer materials show benefits in film-forming processability and mechanical robustness, a high-efficiency all-polymer OPV module is demonstrated in this work. First, a ternary blend consisting of two polymer donors, PM6 and PBQx-TCl, and one polymer acceptor, PY-IT, is developed, with which triplet state recombination is suppressed for a reduced energy loss, thus allowing a higher voltage; and donor-acceptor miscibility is compromised for enhanced charge transport, thus resulting in improved photocurrent and fill factor; all these contribute to a champion efficiency of 19% for all-polymer OPVs. Second, the delayed crystallization kinetics from solution to film solidification is achieved that gives a longer operation time window for optimized blend morphology in large-area module, thus relieving the loss of fill factor and allowing a record efficiency of 16.26% on an upscaled module with an area of 19.3 cm2 . Besides, this all-polymer system also shows excellent mechanical stability. This work demonstrates that all-polymer ternary systems are capable of solving the upscaled manufacturing issue, thereby enabling high-efficiency OPV modules.

3.
Nat Commun ; 15(1): 3287, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627412

RESUMO

Although asymmetric molecular design has been widely demonstrated effective for organic photovoltaics (OPVs), the correlation between asymmetric molecular geometry and their optoelectronic properties is still unclear. To access this issue, we have designed and synthesized several symmetric-asymmetric non-fullerene acceptors (NFAs) pairs with identical physical and optoelectronic properties. Interestingly, we found that the asymmetric NFAs universally exhibited increased open-circuit voltage compared to their symmetric counterparts, due to the reduced non-radiative charge recombination. From our molecular-dynamic simulations, the asymmetric NFA naturally exhibits more diverse molecular interaction patterns at the donor (D):acceptor (A) interface as compared to the symmetric ones, as well as higher D:A interfacial charge-transfer state energy. Moreover, it is observed that the asymmetric structure can effectively suppress triplet state formation. These advantages enable a best efficiency of 18.80%, which is one of the champion results among binary OPVs. Therefore, this work unambiguously demonstrates the unique advantage of asymmetric molecular geometry, unveils the underlying mechanism, and highlights the manipulation of D:A interface as an important consideration for future molecular design.

4.
Adv Mater ; 35(2): e2206563, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36394108

RESUMO

For polymer solar cells (PSCs), the mixture of polymer donors and small-molecule acceptors (SMAs) is fine-tuned to realize a favorable kinetically trapped morphology and thus a commercially viable device efficiency. However, the thermodynamic relaxation of the mixed domains within the blend raises concerns related to the long-term operational stability of the devices, especially in the record-holding Y-series SMAs. Here, a new class of dimeric Y6-based SMAs tethered with differential flexible spacers is reported to regulate their aggregation and relaxation behavior. In their polymer blends with PM6, it is found that they favor an improved structural order relative to that of Y6 counterpart. Most importantly, the tethered SMAs show large glass transition temperatures to suppress the thermodynamic relaxation in mixed domains. For the high-performing dimeric blend, an unprecedented open circuit voltage of 0.87 V is realized with a conversion efficiency of 17.85%, while those of regular Y6-base devices only reach 0.84 V and 16.93%, respectively. Most importantly, the dimer-based device possesses substantially reduced burn-in efficiency loss, retaining more than 80% of the initial efficiency after operating at the maximum power point under continuous illumination for 700 h. The tethering approach provides a new direction to develop PSCs with high efficiency and excellent operating stability.

5.
Nat Commun ; 14(1): 2926, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217503

RESUMO

With the power conversion efficiency of binary polymer solar cells dramatically improved, the thermal stability of the small-molecule acceptors raised the main concerns on the device operating stability. Here, to address this issue, thiophene-dicarboxylate spacer tethered small-molecule acceptors are designed, and their molecular geometries are further regulated via the thiophene-core isomerism engineering, affording dimeric TDY-α with a 2, 5-substitution and TDY-ß with 3, 4-substitution on the core. It shows that TDY-α processes a higher glass transition temperature, better crystallinity relative to its individual small-molecule acceptor segment and isomeric counterpart of TDY-ß, and a more stable morphology with the polymer donor. As a result, the TDY-α based device delivers a higher device efficiency of 18.1%, and most important, achieves an extrapolated lifetime of about 35000 hours that retaining 80% of their initial efficiency. Our result suggests that with proper geometry design, the tethered small-molecule acceptors can achieve both high device efficiency and operating stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA