Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nucleic Acids Res ; 51(D1): D957-D963, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36318257

RESUMO

The Genomes OnLine Database (GOLD) (https://gold.jgi.doe.gov/) at the Department of Energy Joint Genome Institute (DOE-JGI) continues to maintain its role as one of the flagship genomic metadata repositories of the world. The ever-increasing number of projects and metadata are freely available to the user community world-wide. GOLD's metadata is consumed by scientists and remains an important source for large-scale comparative genomics analysis initiatives. Encouraged by this active user engagement and growth, GOLD has continued to add new components and capabilities. The new features such as a public Application Programming Interface (API) and Ecosystem landing page as well as the growth of different entities in this current GOLD v.9 edition are described in detail in this manuscript.


Assuntos
Bases de Dados Genéticas , Genômica , Genoma , Software
2.
Nucleic Acids Res ; 51(D1): D723-D732, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36382399

RESUMO

The Integrated Microbial Genomes & Microbiomes system (IMG/M: https://img.jgi.doe.gov/m/) at the Department of Energy (DOE) Joint Genome Institute (JGI) continues to provide support for users to perform comparative analysis of isolate and single cell genomes, metagenomes, and metatranscriptomes. In addition to datasets produced by the JGI, IMG v.7 also includes datasets imported from public sources such as NCBI Genbank, SRA, and the DOE National Microbiome Data Collaborative (NMDC), or submitted by external users. In the past couple years, we have continued our effort to help the user community by improving the annotation pipeline, upgrading the contents with new reference database versions, and adding new analysis functionalities such as advanced scaffold search, Average Nucleotide Identity (ANI) for high-quality metagenome bins, new cassette search, improved gene neighborhood display, and improvements to metatranscriptome data display and analysis. We also extended the collaboration and integration efforts with other DOE-funded projects such as NMDC and DOE Biology Knowledgebase (KBase).


Assuntos
Gerenciamento de Dados , Genômica , Genoma Bacteriano , Software , Genoma Arqueal , Bases de Dados Genéticas , Metagenoma
3.
Nucleic Acids Res ; 49(D1): D723-D733, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33152092

RESUMO

The Genomes OnLine Database (GOLD) (https://gold.jgi.doe.gov/) is a manually curated, daily updated collection of genome projects and their metadata accumulated from around the world. The current version of the database includes over 1.17 million entries organized broadly into Studies (45 770), Organisms (387 382) or Biosamples (101 207), Sequencing Projects (355 364) and Analysis Projects (283 481). These four levels contain over 600 metadata fields, which includes 76 controlled vocabulary (CV) tables containing 3873 terms. GOLD provides an interactive web user interface for browsing and searching by a wide range of project and metadata fields. Users can enter details about their own projects in GOLD, which acts as a gatekeeper to ensure that metadata is accurately documented before submitting sequence information to the Integrated Microbial Genomes (IMG) system for analysis. In order to maintain a reference dataset for use by members of the scientific community, GOLD also imports projects from public repositories such as GenBank and SRA. The current status of the database, along with recent updates and improvements are described in this manuscript.


Assuntos
Bases de Dados Genéticas , Genoma , Ecossistema , Ontologia Genética , Ferramenta de Busca , Análise de Sequência de DNA
4.
Nucleic Acids Res ; 47(D1): D649-D659, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357420

RESUMO

The Genomes Online Database (GOLD) (https://gold.jgi.doe.gov) is an open online resource, which maintains an up-to-date catalog of genome and metagenome projects in the context of a comprehensive list of associated metadata. Information in GOLD is organized into four levels: Study, Biosample/Organism, Sequencing Project and Analysis Project. Currently GOLD hosts information on 33 415 Studies, 49 826 Biosamples, 313 324 Organisms, 215 881 Sequencing Projects and 174 454 Analysis Projects with a total of 541 metadata fields, of which 80 are based on controlled vocabulary (CV) terms. GOLD provides a user-friendly web interface to browse sequencing projects and launch advanced search tools across four classification levels. Users submit metadata on a wide range of Sequencing and Analysis Projects in GOLD before depositing sequence data to the Integrated Microbial Genomes (IMG) system for analysis. GOLD conforms with and supports the rules set by the Genomic Standards Consortium (GSC) Minimum Information standards. The current version of GOLD (v.7) has seen the number of projects and associated metadata increase exponentially over the years. This paper provides an update on the current status of GOLD and highlights the new features added over the last two years.


Assuntos
Bases de Dados Genéticas/normas , Genômica/métodos , Software/normas , Ontologia Genética
5.
Nucleic Acids Res ; 45(D1): D446-D456, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27794040

RESUMO

The Genomes Online Database (GOLD) (https://gold.jgi.doe.gov) is a manually curated data management system that catalogs sequencing projects with associated metadata from around the world. In the current version of GOLD (v.6), all projects are organized based on a four level classification system in the form of a Study, Organism (for isolates) or Biosample (for environmental samples), Sequencing Project and Analysis Project. Currently, GOLD provides information for 26 117 Studies, 239 100 Organisms, 15 887 Biosamples, 97 212 Sequencing Projects and 78 579 Analysis Projects. These are integrated with over 312 metadata fields from which 58 are controlled vocabularies with 2067 terms. The web interface facilitates submission of a diverse range of Sequencing Projects (such as isolate genome, single-cell genome, metagenome, metatranscriptome) and complex Analysis Projects (such as genome from metagenome, or combined assembly from multiple Sequencing Projects). GOLD provides a seamless interface with the Integrated Microbial Genomes (IMG) system and supports and promotes the Genomic Standards Consortium (GSC) Minimum Information standards. This paper describes the data updates and additional features added during the last two years.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Genoma , Genômica/métodos , Mineração de Dados , Metagenoma , Metagenômica/métodos , Software , Interface Usuário-Computador
6.
BMC Genomics ; 17: 307, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27118214

RESUMO

BACKGROUND: The exponential growth of genomic data from next generation technologies renders traditional manual expert curation effort unsustainable. Many genomic systems have included community annotation tools to address the problem. Most of these systems adopted a "Wiki-based" approach to take advantage of existing wiki technologies, but encountered obstacles in issues such as usability, authorship recognition, information reliability and incentive for community participation. RESULTS: Here, we present a different approach, relying on tightly integrated method rather than "Wiki-based" method, to support community annotation and user collaboration in the Integrated Microbial Genomes (IMG) system. The IMG approach allows users to use existing IMG data warehouse and analysis tools to add gene, pathway and biosynthetic cluster annotations, to analyze/reorganize contigs, genes and functions using workspace datasets, and to share private user annotations and workspace datasets with collaborators. We show that the annotation effort using IMG can be part of the research process to overcome the user incentive and authorship recognition problems thus fostering collaboration among domain experts. The usability and reliability issues are addressed by the integration of curated information and analysis tools in IMG, together with DOE Joint Genome Institute (JGI) expert review. CONCLUSION: By incorporating annotation operations into IMG, we provide an integrated environment for users to perform deeper and extended data analysis and annotation in a single system that can lead to publications and community knowledge sharing as shown in the case studies.


Assuntos
Biologia Computacional/métodos , Genoma Microbiano , Genômica/métodos , Anotação de Sequência Molecular/métodos , Software , Comportamento Cooperativo , Confiabilidade dos Dados , Disseminação de Informação , Internet , Interface Usuário-Computador
7.
Nat Methods ; 7(6): 455-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20436475

RESUMO

We present 'gene prediction improvement pipeline' (GenePRIMP; http://geneprimp.jgi-psf.org/), a computational process that performs evidence-based evaluation of gene models in prokaryotic genomes and reports anomalies including inconsistent start sites, missed genes and split genes. We found that manual curation of gene models using the anomaly reports generated by GenePRIMP improved their quality, and demonstrate the applicability of GenePRIMP in improving finishing quality and comparing different genome-sequencing and annotation technologies.


Assuntos
Biologia Computacional/métodos , Genoma Arqueal , Genoma Bacteriano , Modelos Genéticos
8.
Database (Oxford) ; 20232023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36794865

RESUMO

The power of next-generation sequencing has resulted in an explosive growth in the number of projects aiming to understand the metagenomic diversity of complex microbial environments. The interdisciplinary nature of this microbiome research community, along with the absence of reporting standards for microbiome data and samples, poses a significant challenge for follow-up studies. Commonly used names of metagenomes and metatranscriptomes in public databases currently lack the essential information necessary to accurately describe and classify the underlying samples, which makes a comparative analysis difficult to conduct and often results in misclassified sequences in data repositories. The Genomes OnLine Database (GOLD) (https:// gold.jgi.doe.gov/) at the Department of Energy Joint Genome Institute has been at the forefront of addressing this challenge by developing a standardized nomenclature system for naming microbiome samples. GOLD, currently in its twenty-fifth anniversary, continues to enrich the research community with hundreds of thousands of metagenomes and metatranscriptomes with well-curated and easy-to-understand names. Through this manuscript, we describe the overall naming process that can be easily adopted by researchers worldwide. Additionally, we propose the use of this naming system as a best practice for the scientific community to facilitate better interoperability and reusability of microbiome data.


Assuntos
Microbiota , Software , Microbiota/genética , Metagenoma/genética , Metagenômica/métodos , Gerenciamento de Dados
9.
J Bacteriol ; 194(22): 6300-1, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23105050

RESUMO

Desulfosporosinus species are sulfate-reducing bacteria belonging to the Firmicutes. Their genomes will give insights into the genetic repertoire and evolution of sulfate reducers typically thriving in terrestrial environments and able to degrade toluene (Desulfosporosinus youngiae), to reduce Fe(III) (Desulfosporosinus meridiei, Desulfosporosinus orientis), and to grow under acidic conditions (Desulfosporosinus acidiphilus).


Assuntos
Genoma Bacteriano , Peptococcaceae/classificação , Peptococcaceae/genética , DNA Bacteriano/genética , Dados de Sequência Molecular , Especificidade da Espécie
10.
J Bacteriol ; 193(17): 4549-50, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21725009

RESUMO

Pseudonocardia dioxanivorans CB1190 is the first bacterium reported to be capable of growth on the environmental contaminant 1,4-dioxane and the first member of the genus Pseudonocardia for which there is an annotated genome sequence. Preliminary analysis of the genome (chromosome and three plasmids) indicates that strain CB1190 possesses several multicomponent monooxygenases that could be involved in the aerobic degradation of 1,4-dioxane and other environmental contaminants.


Assuntos
Actinomycetales/classificação , Actinomycetales/genética , Actinomycetales/metabolismo , Dioxanos/metabolismo , Genoma Bacteriano , Biodegradação Ambiental , DNA Bacteriano/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Plasmídeos , Análise de Sequência de DNA/métodos
11.
J Bacteriol ; 193(5): 1183-90, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21183664

RESUMO

Variovorax paradoxus is a microorganism of special interest due to its diverse metabolic capabilities, including the biodegradation of both biogenic compounds and anthropogenic contaminants. V. paradoxus also engages in mutually beneficial interactions with both bacteria and plants. The complete genome sequence of V. paradoxus S110 is composed of 6,754,997 bp with 6,279 predicted protein-coding sequences within two circular chromosomes. Genomic analysis has revealed multiple metabolic features for autotrophic and heterotrophic lifestyles. These metabolic diversities enable independent survival, as well as a symbiotic lifestyle. Consequently, S110 appears to have evolved into a superbly adaptable microorganism that is able to survive in ever-changing environmental conditions. Based on our findings, we suggest V. paradoxus S110 as a potential candidate for agrobiotechnological applications, such as biofertilizer and biopesticide. Because it has many associations with other biota, it is also suited to serve as an additional model system for studies of microbe-plant and microbe-microbe interactions.


Assuntos
Genoma Bacteriano , Proteobactérias/genética , Cromossomos Bacterianos , Metais/toxicidade , Dados de Sequência Molecular , Plantas/microbiologia , Proteobactérias/efeitos dos fármacos , Proteobactérias/metabolismo , Simbiose/genética
12.
J Bacteriol ; 193(17): 4545-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21725025

RESUMO

Two members of the family Flavobacteriaceae were isolated from subseafloor sediments using artificial seawater with cellulose, xylan, and chitin as the sole carbon and energy sources. Here, we present the complete genome sequences of Krokinobacter sp. strain 4H-3-7-5 and Lacinutrix sp. strain 5H-3-7-4, which both encode putatively novel enzymes involved in cellulose, hemicellulose, and chitin metabolism.


Assuntos
Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Genoma Bacteriano , Biodegradação Ambiental , Celulose/metabolismo , Quitina/metabolismo , Flavobacteriaceae/enzimologia , Sedimentos Geológicos/microbiologia , Dados de Sequência Molecular , Polissacarídeos/metabolismo , Água do Mar/microbiologia
13.
J Bacteriol ; 193(19): 5574-5, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21914885

RESUMO

Ruminococcus albus 7 is a highly cellulolytic ruminal bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome of this microbe. This genome will be useful for rumen microbiology and cellulosome biology and in biofuel production, as one of its major fermentation products is ethanol.


Assuntos
Genoma Bacteriano/genética , Ruminococcus/genética
14.
J Bacteriol ; 193(11): 2880-1, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21460088

RESUMO

Here we present the genome of strain Exiguobacterium sp. AT1b, a thermophilic member of the genus Exiguobacterium whose representatives were isolated from various environments along a thermal and physicochemical gradient. This genome was sequenced to be a comparative resource for the study of thermal adaptation with a psychroactive representative of the genus, Exiguobacterium sibiricum strain 255-15, that was previously sequenced by the U.S. Department of Energy's (DOE's) Joint Genome Institute (JGI) (http://genome.ornl.gov/microbial/exig/).


Assuntos
Bacillales/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Bacillales/isolamento & purificação , Microbiologia Ambiental , Temperatura Alta , Dados de Sequência Molecular
15.
J Bacteriol ; 193(9): 2373-4, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21398537

RESUMO

Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastrointestinal tract.


Assuntos
Bactérias Anaeróbias/genética , Trato Gastrointestinal/microbiologia , Bactérias Anaeróbias/classificação , Sequência de Bases , DNA Bacteriano/genética , Genoma Bacteriano , Humanos , Dados de Sequência Molecular
16.
Microbiol Resour Announc ; 8(14)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948472

RESUMO

Asinibacterium sp. strains OR43 and OR53 belong to the phylum Bacteroidetes and were isolated from subsurface sediments in Oak Ridge, TN. Both strains grow at elevated levels of heavy metals. Here, we present the closed genome sequence of Asinibacterium sp. strain OR53 and the draft genome sequence of Asinibacterium sp. strain OR43.

17.
Genome Announc ; 4(4)2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27491994

RESUMO

Arenibacter algicola strain TG409 was isolated from Skeletonema costatum and exhibits the ability to utilize polycyclic aromatic hydrocarbons as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 5,550,230 bp with 4,722 genes and an average G+C content of 39.7%.

18.
Genome Announc ; 4(5)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27609918

RESUMO

Marinobacter sp. strain MCTG268 was isolated from the cosmopolitan marine diatom Skeletonema costatum and can degrade oil hydrocarbons as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 4,449,396 bp with 4,157 genes and an average G+C content of 57.0%.

19.
J Biochem ; 137(2): 177-87, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15749832

RESUMO

Adaptive strategies employed by the yeast Saccharomyces cerevisiae provide robustness and adaptability of its central metabolism. Since central metabolism in yeast has been well studied at the enzymatic and genetic levels, it represents an excellent system for evaluating the relative roles of duplicate genes and alternative metabolic pathways as possible mechanisms for the stability of central metabolism against null mutations. Yeast appears to employ a variety of mechanisms to ensure functional robustness of its central metabolism. Uninterrupted flow of energy and precursor metabolites through the pathways of central metabolism via glycolysis (EMP), pentose phosphate shunt (PPS), and the tricarboxylic acid (TCA) cycle are ensured by a variety of adaptive mechanisms. One of the most significant mechanisms appears to be gene duplication events that have produced a number of isozymes functioning under variable environmental and physiological conditions. Alternative pathways represent another important mechanism for increasing the robustness of the system. The robustness of the pathways of central metabolism is apparently higher than that of the other parts of metabolism, because of its exceptional importance to the organism's vitality. The proportion of duplicated viable genes also is substantially larger in central metabolism than that in a pool of other metabolic genes.


Assuntos
Regulação Fúngica da Expressão Gênica , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ciclo do Ácido Cítrico/genética , Genes Duplicados , Genes Fúngicos , Glioxilatos/metabolismo , Fenótipo
20.
Stand Genomic Sci ; 10: 45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380633

RESUMO

BACKGROUND: In an effort to identify the best practice for finding genes in prokaryotic genomes and propose it as a standard for automated annotation pipelines, 1,004,576 peptides were collected from various publicly available resources, and were used as a basis to evaluate various gene-calling methods. The peptides came from 45 bacterial replicons with an average GC content from 31 % to 74 %, biased toward higher GC content genomes. Automated, manual, and semi-manual methods were used to tally errors in three widely used gene calling methods, as evidenced by peptides mapped outside the boundaries of called genes. RESULTS: We found that the consensus set of identical genes predicted by the three methods constitutes only about 70 % of the genes predicted by each individual method (with start and stop required to coincide). Peptide data was useful for evaluating some of the differences between gene callers, but not reliable enough to make the results conclusive, due to limitations inherent in any proteogenomic study. CONCLUSIONS: A single, unambiguous, unanimous best practice did not emerge from this analysis, since the available proteomics data were not adequate to provide an objective measurement of differences in the accuracy between these methods. However, as a result of this study, software, reference data, and procedures have been better matched among participants, representing a step toward a much-needed standard. In the absence of sufficient amount of exprimental data to achieve a universal standard, our recommendation is that any of these methods can be used by the community, as long as a single method is employed across all datasets to be compared.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA