RESUMO
Obesity is associated with induction of the ER (endoplasmic reticulum)-stress response signalling and insulin resistance. PTP1B (protein tyrosine phosphatase 1B) is a major regulator of adiposity and insulin sensitivity. The aim of the present study was to investigate the role of L-PTP1B (liver-specific PTP1B) in chronically HFD (high-fat diet) and pharmacologically induced (tunicamycin and thapsigargin) ER-stress response signalling in vitro and in vivo. We assessed the effects of ER-stress response induction on hepatic PTP1B expression, and consequences of hepatic-PTP1B deficiency, in cells and mouse liver, on components of ER-stress response signalling. We found that PTP1B protein and mRNA expression levels were up-regulated in response to acute and/or chronic ER stress, in vitro and in vivo. Silencing PTP1B in hepatic cell lines or mouse liver (L-PTP1B(-/-)) protected against induction of pharmacologically induced and/or obesity-induced ER stress. The HFD-induced increase in CHOP (CCAAT/enhancer-binding protein homologous protein) and BIP (binding immunoglobulin protein) mRNA levels were partially inhibited, whereas ATF4 (activated transcription factor 4), GADD34 (growth-arrest and DNA-damage-inducible protein 34), GRP94 (glucose-regulated protein 94), ERDJ4 (ER-localized DnaJ homologue) mRNAs and ATF6 protein cleavage were completely suppressed in L-PTP1B(-/-) mice relative to control littermates. L-PTP1B(-/-) mice also had increased nuclear translocation of spliced XBP-1 (X box-binding protein-1) via increased p85α binding. We demonstrate that the ER-stress response and L-PTP1B expression are interlinked in obesity- and pharmacologically induced ER stress and this may be one of the mechanisms behind improved insulin sensitivity and lower lipid accumulation in L-PTP1B(-/-) mice.
Assuntos
Retículo Endoplasmático/patologia , Deleção de Genes , Fígado/enzimologia , Obesidade/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/deficiência , Estresse Fisiológico , Fator 6 Ativador da Transcrição/metabolismo , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Células Hep G2 , Homeostase/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Obesidade/patologia , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Tapsigargina/farmacologia , Fatores de Transcrição/metabolismo , Tunicamicina/farmacologia , Proteína 1 de Ligação a X-BoxRESUMO
BACKGROUND: Components of the insulin receptor signaling pathway are probably some of the best studied ones. Even though methods for studying these components are well established, the in vivo effects of different fasting regimens, and the time course of insulin receptor phosphorylation and that of its downstream components in insulin-sensitive peripheral tissues have not been analyzed in detail. RATIONALE: When assessing insulin signaling, it may be beneficial to drive insulin levels as low as possible by performing an overnight fast before injecting a supra-physiological dose of insulin. Recent studies have shown however that 5 or 6 h fast in mice is sufficient to assess physiological responses to insulin and/or glucose in glucose tolerance tests, insulin tolerance tests and euglycemic hyperinsulinemic clamp studies. Moreover, mice are nocturnal feeders, with â¼70% of their daily caloric intake occurring during the dark cycle, and their metabolic rate is much higher than humans. Therefore, an overnight fast in mice is closer to starvation than just food withdrawal. Thus our aim was to assess insulin signaling components from the insulin receptor to downstream targets IRS1, Akt/PKB, GSK3, Erk1/2 and ribosomal protein S6 in muscle, liver and adipose tissue in 5 h versus 16 h (overnight) fasted mice, and the time course (0-30 min) of these phosphorylation events. We also assessed whether re-feeding under 5 h and 16 h fasting conditions was a more robust stimulus than insulin alone. CONCLUSIONS: Our study determines that a short food withdrawal from mice, for a period of 5 h, results in a similar insulin-stimulated response in phosphorylation events as the long overnight fast, presenting a more physiological experimental set up. We also demonstrate that in vivo, insulin-stimulated phosphorylation of its signaling components is different between different peripheral tissues, and depending on the tissue(s) and protein(s) of interest, an appropriate time course should be chosen.
Assuntos
Tecido Adiposo/metabolismo , Jejum/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Receptor de Insulina/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Ingestão de Alimentos , Jejum/sangue , Quinase 3 da Glicogênio Sintase/metabolismo , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Transdução de SinaisRESUMO
Protein tyrosine phosphatase-1B (PTP1B) negatively regulates insulin and leptin signaling, rendering it an attractive drug target for treatment of obesity-induced insulin resistance. However, some studies suggest caution when targeting macrophage PTP1B, due to its potential anti-inflammatory role. We assessed the role of macrophage PTP1B in inflammation and whole-body metabolism using myeloid-cell (LysM) PTP1B knockout mice (LysM PTP1B). LysM PTP1B mice were protected against lipopolysaccharide (LPS)-induced endotoxemia and hepatic damage associated with decreased proinflammatory cytokine secretion in vivo. In vitro, LPS-treated LysM PTP1B bone marrow-derived macrophages (BMDMs) displayed increased interleukin (IL)-10 mRNA expression, with a concomitant decrease in TNF-α mRNA levels. These anti-inflammatory effects were associated with increased LPS- and IL-10-induced STAT3 phosphorylation in LysM PTP1B BMDMs. Chronic inflammation induced by high-fat (HF) feeding led to equally beneficial effects of macrophage PTP1B deficiency; LysM PTP1B mice exhibited improved glucose and insulin tolerance, protection against LPS-induced hyperinsulinemia, decreased macrophage infiltration into adipose tissue, and decreased liver damage. HF-fed LysM PTP1B mice had increased basal and LPS-induced IL-10 levels, associated with elevated STAT3 phosphorylation in splenic cells, IL-10 mRNA expression, and expansion of cells expressing myeloid markers. These increased IL-10 levels negatively correlated with circulating insulin and alanine transferase levels. Our studies implicate myeloid PTP1B in negative regulation of STAT3/IL-10-mediated signaling, highlighting its inhibition as a potential anti-inflammatory and antidiabetic target in obesity.
Assuntos
Gorduras na Dieta/efeitos adversos , Hiperinsulinismo/induzido quimicamente , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Células Mieloides/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/patologia , Animais , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas , Endotoxemia/induzido quimicamente , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucose/metabolismo , Homeostase , Inflamação/patologia , Interleucina-10/genética , Interleucina-10/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Baço/citologia , Baço/metabolismoRESUMO
The synthetic retinoid, Fenretinide (FEN), inhibits obesity and insulin resistance in mice and is in early clinical trials for treatment of insulin resistance in obese humans. We aimed to determine whether alterations in retinoic acid (RA)-responsive genes contribute to the beneficial effects of FEN. We examined the effect of FEN on 3T3-L1 adipocyte differentiation and alterations in gene expression in C57Bl/6 and retinaldehyde dehydrogenase (RALDH) 1 knockout (KO) mice fed a high-fat (HF) diet. FEN completely inhibited adipocyte differentiation by blocking CCAAT/enhancer-binding protein (C/EBP) α/peroxisome proliferator-activated receptor (PPAR) γ-mediated induction of downstream genes and upregulating RA-responsive genes like cellular retinol-binding protein-1. In mice fed an HF diet, RA-responsive genes were markedly increased in adipose, liver, and hypothalamus, with short-term and long-term FEN treatment. In adipose, FEN inhibited the downregulation of PPARγ and improved insulin sensitivity and the levels of adiponectin, resistin, and serum RBP (RBP4). FEN inhibited hyperleptinemia in vivo and leptin expression in adipocytes. Surprisingly, hypothalamic neuropeptide Y expression was completely suppressed, suggesting a central effect of FEN to normalize hyperglycemia. Moreover, FEN induced RA-responsive genes in RALDH1 KO mice, demonstrating that FEN can augment RA signaling when RA synthesis is impaired. We show that FEN-mediated beneficial effects are through alterations in retinoid homeostasis genes, and these are strong candidates as therapeutic targets for the treatment of obesity and insulin resistance.
Assuntos
Tecido Adiposo/efeitos dos fármacos , Fármacos Antiobesidade/uso terapêutico , Fenretinida/uso terapêutico , Hipotálamo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Obesidade/prevenção & controle , Retinoides/metabolismo , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica/efeitos adversos , Fenretinida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Elementos de Resposta/efeitos dos fármacos , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismoRESUMO
Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s) of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/-)) were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/-) mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD)-fed adip-crePTP1B(-/-) mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR) and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α) expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.