Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(17): E3950-E3958, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632183

RESUMO

Understanding olfaction at the molecular level is challenging due to the lack of crystallographic models of odorant receptors (ORs). To better understand the molecular mechanism of OR activation, we focused on chiral (R)-muscone and other musk-smelling odorants due to their great importance and widespread use in perfumery and traditional medicine, as well as environmental concerns associated with bioaccumulation of musks with estrogenic/antiestrogenic properties. We experimentally and computationally examined the activation of human receptors OR5AN1 and OR1A1, recently identified as specifically responding to musk compounds. OR5AN1 responds at nanomolar concentrations to musk ketone and robustly to macrocyclic sulfoxides and fluorine-substituted macrocyclic ketones; OR1A1 responds only to nitromusks. Structural models of OR5AN1 and OR1A1 based on quantum mechanics/molecular mechanics (QM/MM) hybrid methods were validated through direct comparisons with activation profiles from site-directed mutagenesis experiments and analysis of binding energies for 35 musk-related odorants. The experimentally found chiral selectivity of OR5AN1 to (R)- over (S)-muscone was also computationally confirmed for muscone and fluorinated (R)-muscone analogs. Structural models show that OR5AN1, highly responsive to nitromusks over macrocyclic musks, stabilizes odorants by hydrogen bonding to Tyr260 of transmembrane α-helix 6 and hydrophobic interactions with surrounding aromatic residues Phe105, Phe194, and Phe207. The binding of OR1A1 to nitromusks is stabilized by hydrogen bonding to Tyr258 along with hydrophobic interactions with surrounding aromatic residues Tyr251 and Phe206. Hydrophobic/nonpolar and hydrogen bonding interactions contribute, respectively, 77% and 13% to the odorant binding affinities, as shown by an atom-based quantitative structure-activity relationship model.


Assuntos
Cicloparafinas/química , Modelos Moleculares , Receptores Odorantes/química , Células HEK293 , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Estrutura Secundária de Proteína , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
2.
Arch Pharm (Weinheim) ; 354(5): e2000256, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33410150

RESUMO

[4-(Adamantane-1-carboxamido)-3-oxo-1-thia-4-azaspiro[4.4]nonan-2-yl]acetic acid (4a) and [4-(adamantane-1-carboxamido)-8-nonsubstituted/substituted-3-oxo-1-thia-4-azas-piro[4.5]decane-2-yl]acetic acid (4b-g) derivatives were synthesized; their structures were verified by elemental analysis, infrared spectroscopy, 1 H nuclear magnetic resonance (NMR), 13 C NMR, and mass spectroscopy data; and their in vitro cytotoxicity activities were investigated against human hepatocellular carcinoma, human prostate adenocarcinoma, and human lung carcinoma cell lines (HepG2, PC-3, and A549, respectively), and a mouse fibroblast cell line (NIH/3T3). All compounds, except compound 4e, were found as cytotoxic, especially on A549 cells as compared with the other cells (selectivity index = 2.01-11.6). As a further step, the effects of compounds 4a-c on apoptosis induction were tested and the expression of selected apoptosis genes was analyzed. Among the selected compounds, compound 4a induced apoptosis remarkably. Moreover, computational calculations of the binding of compounds 4a-c to the BIR3 domain of the human inhibitor of apoptosis protein revealed ligand-protein interactions at the atomistic level and emphasized the importance of a hydrophobic moiety on the ligands for better binding.


Assuntos
Adamantano/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Adamantano/análogos & derivados , Adamantano/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
3.
Bioorg Chem ; 104: 104202, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32892069

RESUMO

In this work, novel 5-fluoro-1-methyl/ethyl-1H-indole-2,3-dione 3-[4-(substituted phenyl)-thiosemicarbazones] 6a-n and 7a-n were synthesized. The antiviral effects of the compounds were tested against HSV-1 (KOS), HSV-2 (G) HSV-1 TK- KOS ACVr and VV in HEL cell cultures using acyclovir and ganciclovir as standards, and Coxsackie B4 virus in Vero cell cultures using ribavirin and mycophenolic acid as standards. R2 ethyl substituted 7 derivatives were found effective against viruses tested. R1 4-CF3 substituted 7d, R1 4-OCH3 substituted 7 g and R1 3-Cl substituted 7 l showed activity against HSV-1 (KOS), HSV-2 (G) HSV-1 TK- KOS ACVr and VV. Whereas only R1 4-Br substituted 7n has selective activity against coxsackie B4 virus. Molecular modelingstudies of 7d and 7l were performed to determine binding side on HSV-1 glycoprotein B and D, HSV-2 glycoprotein B structures.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
Arch Pharm (Weinheim) ; 352(11): e1900028, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31531897

RESUMO

Hemagglutinin is the surface protein of the influenza virus that mediates both binding and penetration of the virus into host cells. We here report on the synthesis and structure-activity relationship of some novel N-(1-thia-4-azaspiro[4.5]decan-4-yl)-carboxamide compounds carrying the 5-chloro-2-methoxybenzamide structure, designed as influenza virus fusion inhibitors. The carboxamides (1a-h, 2a-h) have a similar backbone structure as the fusion inhibitors that we reported on previously. Compounds 2b and 2d displayed inhibitory activity against influenza A/H3N2 virus replication (average antiviral EC50 : 2.1 µM for 2b and 3.4 µM for 2d). Data obtained in the hemolysis inhibition assay supported that these compounds act as inhibitors of the influenza virus hemagglutinin-mediated fusion process.


Assuntos
Antivirais/farmacologia , Compostos Aza/farmacologia , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Compostos de Espiro/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Compostos Aza/síntese química , Compostos Aza/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
5.
Proc Natl Acad Sci U S A ; 112(21): E2766-74, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25901328

RESUMO

The vibrational theory of olfaction assumes that electron transfer occurs across odorants at the active sites of odorant receptors (ORs), serving as a sensitive measure of odorant vibrational frequencies, ultimately leading to olfactory perception. A previous study reported that human subjects differentiated hydrogen/deuterium isotopomers (isomers with isotopic atoms) of the musk compound cyclopentadecanone as evidence supporting the theory. Here, we find no evidence for such differentiation at the molecular level. In fact, we find that the human musk-recognizing receptor, OR5AN1, identified using a heterologous OR expression system and robustly responding to cyclopentadecanone and muscone, fails to distinguish isotopomers of these compounds in vitro. Furthermore, the mouse (methylthio)methanethiol-recognizing receptor, MOR244-3, as well as other selected human and mouse ORs, responded similarly to normal, deuterated, and (13)C isotopomers of their respective ligands, paralleling our results with the musk receptor OR5AN1. These findings suggest that the proposed vibration theory does not apply to the human musk receptor OR5AN1, mouse thiol receptor MOR244-3, or other ORs examined. Also, contrary to the vibration theory predictions, muscone-d30 lacks the 1,380- to 1,550-cm(-1) IR bands claimed to be essential for musk odor. Furthermore, our theoretical analysis shows that the proposed electron transfer mechanism of the vibrational frequencies of odorants could be easily suppressed by quantum effects of nonodorant molecular vibrational modes. These and other concerns about electron transfer at ORs, together with our extensive experimental data, argue against the plausibility of the vibration theory.


Assuntos
Modelos Biológicos , Odorantes , Receptores Odorantes/metabolismo , Olfato/fisiologia , Animais , Isótopos de Carbono , Cicloparafinas/química , Deutério , Transporte de Elétrons , Ácidos Graxos Monoinsaturados/química , Células HEK293 , Humanos , Isomerismo , Camundongos , Vibração
6.
Chemistry ; 23(11): 2706-2715, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28004889

RESUMO

To elucidate the involvement of individual and inter-related pathological factors [i.e., amyloid-ß (Aß), metals, and oxidative stress] in the pathogenesis of Alzheimer's disease (AD), chemical tools have been developed. Characteristics required for such tool construction, however, have not been clearly identified; thus, the optimization of available tools or new design has been limited. Here, key structural properties and mechanisms that can determine tools' regulatory reactivities with multiple pathogenic features found in AD are reported. A series of small molecules was built up through rational structural selection and variations onto the framework of a tool useful for in vitro and in vivo metal-Aß investigation. Variations include: (i) location and number of an Aß interacting moiety; (ii) metal binding site; and (iii) denticity and structural flexibility. Detailed biochemical, biophysical, and computational studies were able to provide a foundation of how to originate molecular formulas to devise chemical tools capable of controlling the reactivities of various pathological components through distinct mechanisms. Overall, this multidisciplinary investigation illustrates a structure-mechanism-based strategy of tool invention for such a complicated brain disease.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cloretos/química , Cobre/química , Humanos , Metais/química , Metais/metabolismo , Estresse Oxidativo , Ligação Proteica , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria , Compostos de Zinco/química
7.
Acc Chem Res ; 48(2): 192-200, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25607542

RESUMO

CONSPECTUS: The selective hydrolysis of a peptide or amide bond (-(O═)C-NH-) by a synthetic metallopeptidase is required in a wide range of biological, biotechnological, and industrial applications. In nature, highly specialized enzymes known as proteases and peptidases are used to accomplish this daunting task. Currently, many peptide bond cleaving enzymes and synthetic reagents have been utilized to achieve efficient peptide hydrolysis. However, they possess some serious limitations. To overcome these inadequacies, a variety of metal complexes have been developed that mimic the activities of natural enzymes (metallopeptidases). However, in comparison to metallopeptidases, the hydrolytic reactions facilitated by their existing synthetic analogues are considerably slower and occur with lower catalytic turnover. This could be due to the following reasons: (1) they lack chemical properties of amino acid residues found within enzyme active sites; (2) they contain a higher metal coordination number compared with naturally occurring enzymes; and (3) they do not have access to second coordination shell residues that provide substantial rate enhancements in enzymes. Additionally, the critical structural and mechanistic information required for the development of the next generation of synthetic metallopeptidases cannot be readily obtained through existing experimental techniques. This is because most experimental techniques cannot follow the individual chemical steps in the catalytic cycle due to the fast rate of enzymes. They are also limited by the fact that the diamagnetic d(10) Zn(II) center is silent to electronic, electron spin resonance, and (67)Zn NMR spectroscopies. Therefore, we have employed molecular dynamics (MD), quantum mechanics (QM), and hybrid quantum mechanics/molecular mechanics (QM/MM) techniques to derive this information. In particular, the role of the metal ions, ligands, and microenvironment in the functioning of mono- and binuclear metal center containing enzymes such as insulin degrading enzyme (IDE) and bovine lens leucine aminopeptidase (BILAP), respectively, and their synthetic analogues have been investigated. Our results suggested that in the functioning of IDE, the chemical nature of the peptide bond played a role in the energetics of the reaction and the peptide bond cleavage occurred in the rate-limiting step of the mechanism. In the cocatalytic mechanism used by BILAP, one metal center polarized the scissile peptide bond through the formation of a bond between the metal and the carbonyl group of the substrate, while the second metal center delivered the hydroxyl nucleophile. The Zn(N3) [Zn(His, His, His)] core of matrix metalloproteinase was better than the Zn(N2O) [Zn(His, His, Glu)] core of IDE for peptide hydrolysis. Due to the synergistic interaction between the two metal centers, the binuclear metal center containing Pd2(µ-OH)([18]aneN6)](4+) complex was found to be ∼100 times faster than the mononuclear [Pd(H2O)4](2+) complex. A successful small-molecule synthetic analogue of a mononuclear metallopeptidase must contain a metal with a strong Lewis acidity capable of reducing the pKa of its water ligand to less than 7. Ideally, the metal center should include three ligands with low basicity. The steric effects or strain exerted by the microenvironment could be used to weaken the metal-ligand interactions and increase the activity of the metallopeptidase.


Assuntos
Materiais Biomiméticos/química , Metaloproteases/metabolismo , Modelos Moleculares , Animais , Materiais Biomiméticos/síntese química , Domínio Catalítico , Humanos , Hidrólise , Peptídeos/metabolismo
8.
Phys Chem Chem Phys ; 18(36): 24790-24801, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711373

RESUMO

Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILAP), have been discussed. BACE1 is a catalytic Asp dyad [Asp, Asp-] containing aspartyl protease, while IDE and BILAP are mononuclear [Zn(His, His, Glu)] and binuclear [Zn1(Asp, Glu, Asp)-Zn2(Lys, Glu, Asp, Asp)] core possessing metallopeptidases, respectively. Specifically, enzyme-substrate interactions and the roles of metal ion(s), the ligand environment, second coordination shell residues, and the protein environment in the functioning of these enzymes have been elucidated. This information will be useful to design small inhibitors, activators, and synthetic analogues of these enzymes for biomedical, biotechnological, and industrial applications.


Assuntos
Peptídeos/química , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Biocatálise , Domínio Catalítico , Bovinos , Hidrólise , Insulisina/química , Insulisina/metabolismo , Leucil Aminopeptidase/química , Leucil Aminopeptidase/metabolismo , Ligantes , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Termodinâmica , Zinco/química
9.
J Am Chem Soc ; 137(46): 14785-97, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26575890

RESUMO

Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-ß (Aß) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand-peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer's disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aß forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aß with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Linhagem Celular , Humanos , Técnicas In Vitro , Simulação de Dinâmica Molecular , Oxirredução
10.
Seizure ; 116: 51-64, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37353388

RESUMO

PURPOSE: In Developmental and Epileptic Encephalopathies (DEEs), identifying the precise genetic factors guides the clinicians to apply the most appropriate treatment for the patient. Due to high locus heterogeneity, WES analysis is a promising approach for the genetic diagnosis of DEE. Therefore, the aim of the present study is to evaluate the utility of WES in the diagnosis and treatment of DEE patients. METHODS: The exome data of 29 DEE patients were filtrated for destructive and missense mutations in 1896 epilepsy-related genes to detect the causative variants and examine the genotype-phenotype correlations. We performed Sanger sequencing with the available DNA samples to follow the co-segregation of the variants with the disease phenotype in the families. Also, the structural effects of p.Asn1053Ser, p.Pro120Ser and p.Glu1868Gly mutations on KCNMA1, NPC2, and SCN2A proteins, respectively, were evaluated by molecular dynamics (MD) and molecular docking simulations. RESULTS: Out of 29, nine patients (31%) harbor pathological (P) or likely pathological (LP) mutations in SCN2A, KCNQ2, ATP1A2, KCNMA1, and MECP2 genes, and three patients have VUS variants (10%) in SCN1A and SCN2A genes. Sanger sequencing results indicated that three of the patients have de novo mutations while eight of them carry paternally and/or maternally inherited causative variants. MD and molecular docking simulations supported the destructive effects of the mutations on KCNMA1, NPC2, and SCN2A protein structures. CONCLUSION: Herein we demonstrated the effectiveness of WES for DEE with high locus heterogeneity. Identification of the genetic etiology guided the clinicians to adjust the proper treatment for the patients.


Assuntos
Epilepsia Generalizada , Epilepsia , Humanos , Exoma/genética , Simulação de Acoplamento Molecular , Epilepsia/genética , Epilepsia/diagnóstico , Epilepsia Generalizada/genética , Mutação/genética , Fenótipo
11.
Acta Chim Slov ; 71(2): 215-225, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38919104

RESUMO

1H-indole-2,3-dione 3-[4-(4-sulfamoylphenyl)thiosemicarbazones] (6a-j) were evaluated against Para-influenza-3, Reovirus-1, Sindbis, Coxsackie B4 and Punto Toro viruses. New 1-methyl-1H-indole-2,3-dione 3-[4-(4-sulfamoylphenyl)thiosemicarbazones] (7a-c) were synthesized to evaluate the contribution of methyl substitution at position 1- of the indole ring to antiviral activity. The test results showed that compounds 5-trifluoromethoxy- substituted 6c (EC50: 2-9 µM) and 5-bromo- substituted 6f (EC50: 2-3 µM) have non-toxic selective antiviral activity while not all standards are active against Reovirus-1. Molecular docking studies of 6c and 6f were carried out to determine the possible binding positions with Reovirus-1. Trifluoromethoxy and bromine substitutions at position 5- of the indole ring provided selective antiviral activity, while methyl substitution at position 1- of the indole ring significantly decreased the activity and increased toxicity against Reovirus-1.


Assuntos
Antivirais , Tiossemicarbazonas , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Tiossemicarbazonas/síntese química , Simulação de Acoplamento Molecular , Animais , Indóis/farmacologia , Indóis/química , Humanos , Relação Estrutura-Atividade
12.
ACS Bio Med Chem Au ; 4(3): 131-136, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911910

RESUMO

Phytohormones have significant roles in redox metabolism, inflammatory responses, and cellular survival mechanisms within the microenvironment of the mammalian brain. Herein, we identified the mammalian molecular targets of three representative strigolactone (SL) analogues structurally derived from apocarotenoids and the functional equivalent of plant hormones. All tested SL analogues have an inhibitory effect on NLRP3 inflammasome-mediated IL-1ß release in murine microglial cells. However, IND and EGO10 became prominent among them due to their high potency at low micromolar doses. All SL analogues dose-dependently suppressed the release and expression of proinflammatory factors. For EGO10 and IND, IC50 values for iNOS-associated NO secretion were as low as 1.72 and 1.02 µM, respectively. In silico analyses revealed that (S)-EGO10 interacted with iNOS, NLRP3, and Keap1 ligands with the highest binding affinities among all stereoisomeric SL analogues. Although all compounds were effective in microglial Mox phenotype polarization, 4-Br-debranone exhibited a differential pattern for upregulating Nrf2-driven downstream enzymes.

13.
Int J Antimicrob Agents ; : 107230, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824973

RESUMO

Evaluating the potential of using both synthetic and biological products as targeting agents for the diagnosis, imaging, and treatment of infections due to particularly antibiotic-resistant pathogens is important for controlling infections. We examined the interaction between Gp45, a receptor-binding protein of the ϕ11 lysogenic phage, and its host S. aureus, a common cause of nosocomial infections. Using molecular dynamics and docking simulations, we identified the peptides that bind to S. aureus wall teichoic acids via Gp45. We compared the binding affinity of Gp45 and the two highest-scoring peptide sequences (P1 and P3) and their scrambled forms using microscopy, spectroscopy, and ELISA. Our results revealed that rGp45 (recombinant Gp45) and chemically synthesized P1 had a higher binding affinity for S. aureus compared with all other peptides, with the exception of E. coli. Furthermore, rGp45 had a capture efficiency of over 86%; P1 had a capture efficiency of over 64%. Overall, our findings suggest that receptor-binding proteins such as rGp45, which provide a critical initiation of the phage life cycle for host adsorption, might play an important role in the diagnosis, imaging, and targeting of bacterial infections. Studying such proteins could accordingly enable the development of effective strategies for controlling infections.

14.
J Am Chem Soc ; 135(29): 10810-6, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23845146

RESUMO

Photoluminescent molecules are widely used for real-time monitoring of peptide aggregation. In this Article, we detail both experimental and computational modeling to elucidate the interaction between [Ru(bpy)2dppz](2+) and amyloid-ß (Aß(1-40)) aggregates. The transition from monomeric to fibrillar Aß is of interest in the study of Alzheimer's disease. Concentration-dependent experiments allowed the determination of a dissociation constant of 2.1 µM, while Job plots provided a binding stoichiometry of 2.6 Aß monomers per [Ru(bpy)2dppz](2+). Our computational approach that combines molecular docking (both rigid and flexible) and all-atom molecular dynamics (MD) simulations predicts that the hydrophobic cleft between Val18 and Phe20 is a plausible binding site, which could also explain the increase in photoluminescence of [Ru(bpy)2dppz](2+) upon binding. This binding site is parallel to the fibril axis, in marked contrast to the binding site of these complexes in DNA (perpendicular to the DNA axis). Other binding sites may exist at the edges of the Aß fibril, but they are actually of low abundance in an Aß fibril several micrometers long. The assignment of the binding site was confirmed by binding studies in an Aß fragment (Aß(25-35)) that lacked the amino acids necessary to form the binding site. The agreement between the experimental and computational work is remarkable and provides a general model that can be used for studying the interaction of amyloid-binding molecules to Aß.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Compostos Organometálicos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fenazinas/metabolismo , Doença de Alzheimer/metabolismo , Sítios de Ligação , Humanos , Luz , Medições Luminescentes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
15.
J Biol Inorg Chem ; 17(2): 209-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21918843

RESUMO

In this density functional theory study, reaction mechanisms of a co-catalytic binuclear metal center (Zn1-Zn2) containing enzyme leucine aminopeptidase for two different metal bridging nucleophiles (H(2)O and -OH) have been investigated. In addition, the effects of the substrate (L-leucine-p-nitroanilide → L-leucyl-p-anisidine) and metal (Zn1 → Mg and Zn2 → Co, i.e., Mg1-Zn2 and Mg1-Co2 variants) substitutions on the energetics of the mechanism have been investigated. The general acid/base mechanism utilizing a bicarbonate ion followed by this enzyme is divided into two steps: (1) the formation of the gem-diolate intermediate, and (2) the cleavage of the peptide bond. With the computed barrier of 17.8 kcal/mol, the mechanism utilizing a hydroxyl nucleophile was found to be in excellent agreement with the experimentally measured barrier of 18.7 kcal/mol. The rate-limiting step for reaction with L-leucine-p-nitroanilide is the cleavage of the peptide bond with a barrier of 17.8 kcal/mol. However, for L-leucyl-p-anisidine all steps of the mechanism were found to occur with similar barriers (18.0-19.0 kcal/mol). For the metallovariants, cleavage of the peptide bond occurs in the rate-limiting step with barriers of 17.8, 18.0, and 24.2 kcal/mol for the Zn1-Zn2, Mg1-Zn2, and Mg1-Co2 enzymes, respectively. The nature of the metal ion was found to affect only the creation of the gem-diolate intermediate, and after that all three enzymes follow essentially the same energetics. The results reported in this study have elucidated specific roles of both metal centers, the nucleophile, indirect ligands, and substrates in the catalytic functioning of this important class of binuclear metallopeptidases.


Assuntos
Leucil Aminopeptidase/metabolismo , Peptídeos/metabolismo , Zinco/metabolismo , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Animais , Domínio Catalítico , Bovinos , Cristalografia por Raios X , Hidrólise , Leucina/química , Leucina/metabolismo , Leucil Aminopeptidase/química , Modelos Moleculares , Peptídeos/química , Teoria Quântica , Especificidade por Substrato , Zinco/química
16.
ACS Chem Neurosci ; 13(5): 572-580, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35138812

RESUMO

Strigolactones (SLs), carotenoid-derived phytohormones, control the plant response and signaling pathways for stressful conditions. In addition, they impact numerous cellular processes in mammalians and present new scaffolds for various biomedical applications. Recent studies demonstrated that SLs possess potent antitumor activity against several cancer cells. Herein, we sought to elucidate the inhibitory effects of SL analogs on the growth and survival of human brain tumor cell lines. Among four tested SLs, we showed for the first time that two lead bioactiphores, indanone-derived SL and EGO10, can inhibit cancer cell proliferation, induce apoptosis, and induce G1 cell cycle arrest at low concentrations. SL analogs were marked by increased expression of Bax/Caspase-3 genes and downregulation of Bcl-2. In silico studies were conducted to identify drug-likeness, blood-brain barrier penetrating properties, and molecular docking with Bcl-2 protein. Taken together, this study indicates that SLs may be promising antiglioma agents, presenting novel pharmacophores for further preclinical and clinical assessment.


Assuntos
Glioblastoma , Animais , Glioblastoma/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Lactonas/farmacologia , Simulação de Acoplamento Molecular
17.
Turk J Chem ; 45(4): 1146-1154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707440

RESUMO

Gram-negative bacterium Neisseria meningitidis, responsible for human infectious disease meningitis, acquires the iron (Fe3+) ion needed for its survival from human transferrin protein (hTf). For this transport, transferrin binding proteins TbpA and TbpB are facilitated by the bacterium. The transfer cannot occur without TbpA, while the absence of TbpB only slows down the transfer. Thus, understanding the TbpA-hTf binding at the atomic level is crucial for the fight against bacterial meningitis infections. In this study, atomistic level of mechanism for TbpA-hTf binding is elucidated through 100 ns long all-atom classical MD simulations on free (uncomplexed) TbpA. TbpA protein underwent conformational change from 'open' state to 'closed' state, where two loop domains, loops 5 and 8, were very close to each other. This state clearly cannot accommodate hTf in the cleft between these two loops. Moreover, the helix finger domain, which might play a critical role in Fe3+ ion uptake, also shifted downwards leading to unfavorable Tbp-hTf binding. Results of this study indicated that TbpA must switch between 'closed' state to 'open' state, where loops 5 and 8 are far from each other creating a cleft for hTf binding. The atomistic level of understanding to conformational switch is crucial for TbpA-hTf complex inhibition strategies. Drug candidates can be designed to prevent this conformational switch, keeping TbpA locked in 'closed' state.

18.
Turk J Chem ; 45(1): 35-41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679150

RESUMO

The new type of coronavirus, SARS-CoV-2 has affected more than 22.6 million people worldwide. Since the first day the virus was spotted in Wuhan, China, numerous drug design studies have been conducted all over the globe. Most of these studies target the receptor-binding domain of spike protein of SARS-CoV-2, which is known to bind to the human ACE2 receptor and SARS-CoV-2 main protease, vital for the virus' replication. However, there might be a third target, human furin protease, which cleaves the virus' S1-S2 domains playing an active role in its entry into the host cell. In this study, we docked five clinically used drug molecules, favipiravir, hydroxychloroquine, remdesivir, lopinavir, and ritonavir onto three target proteins, the receptor-binding domain of SARS-CoV-2 spike protein, SARS-CoV-2 main protease, and human furin protease. Results of molecular docking simulations revealed that human furin protease might be targeted by COVID-19. Remdesivir, a nucleic acid derivative, strongly bound to the active site of this protease, suggesting that this molecule can be used as a template for designing novel furin protease inhibitors to fight against the disease. Protein-drug interactions revealed in this study at the molecular level, can pave the way for better drug design for each specific target.

19.
Comput Theor Chem ; 1199: 113215, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33747754

RESUMO

Today, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently caused a severe outbreak worldwide. There are still several challenges in COVID-19 diagnoses, such as limited reagents, equipment, and long turnaround times. In this research, we propose to design molecularly imprinted polymers as a novel approach for the rapid and accurate detection of SARS-CoV-2. For this purpose, we investigated molecular interactions between the target spike protein, receptor-binding domain of the virus, and the common functional monomers used in molecular imprinting by a plethora of computational analyses; sequence analysis, molecular docking, and molecular dynamics (MD) simulations. Our results demonstrated that AMPS and IA monomers gave promising results on the SARS-CoV-2 specific TEIYQAGST sequence for further analysis. Therefore, we propose an epitope approach-based synthesis route for specific recognition of SARS-CoV-2 by using AMPS and IA as functional monomers and the peptide fragment of the TEIYQAGST sequence as a template molecule.

20.
Protein J ; 40(4): 512-521, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33459938

RESUMO

Mutations in hepatocyte nuclear factor (HNF)1A gene cause the most common form of Maturity-onset diabetes of the young (MODY), a monogenic subtype of diabetes mellitus. Functional characterization of mutant proteins reveals that mutations may disrupt DNA binding capacity, transactivation ability and nuclear localization of HNF1A depending on the position of the mutation. Previously identified Arg271Trp and Ser345Tyr mutations in HNF1A were found to be defective in nuclear localization. Arg271 residue resides in a region similar to classical nuclear localization signal (NLS) motif, while Ser345 does not. Importin α family members recognize NLS motifs on cargo proteins and subsequently translocate them into nucleus. Here, we first investigated the nuclear localization mechanism of wild type HNF1A protein. For this purpose, we analyzed the interaction of HNF1A with three mouse homolog importin α proteins (KPNA2, KPNA4 and KPNA6) by co-immunoprecipitation assay and molecular docking simulation. Hereby, KPNA6 was identified as the main import receptor, which is responsible for the transport of HNF1A into the nucleus. Immunolocalization studies in mouse pancreatic cells (Min6) also confirmed the co-localization of HNF1A and KPNA6 in the cytoplasm. Secondly, the interaction between KPNA6 and mutant HNF1A proteins (Arg271Trp and Ser345Tyr) was assessed. Co-immunoprecipitation studies revealed a reduced interaction compared to wild type HNF1A. Our study demonstrated for the first time that HNF1A transcription factor is recognized and transported by importin/karyopherin import family, and mutations in NLS motifs may disrupt the interaction leading to nuclear localization abnormalities and MODY phenotype.


Assuntos
Diabetes Mellitus Tipo 2 , Fator 1-alfa Nuclear de Hepatócito , Mutação de Sentido Incorreto , Sinais de Localização Nuclear , alfa Carioferinas , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA