Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 71(2): 296-308, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593807

RESUMO

OBJECTIVE: Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic ß-cells producing insulin. Both T1D patients and animal models exhibit gut microbiota and mucosa alterations, although the exact cause for these remains poorly understood. We investigated the production of key cytokines controlling gut integrity, the abundance of segmented filamentous bacteria (SFB) involved in the production of these cytokines, and the respective role of autoimmune inflammation and hyperglycaemia. DESIGN: We used several mouse models of autoimmune T1D as well as mice rendered hyperglycaemic without inflammation to study gut mucosa and microbiota dysbiosis. We analysed cytokine expression in immune cells, epithelial cell function, SFB abundance and microbiota composition by 16S sequencing. We assessed the role of anti-tumour necrosis factor α on gut mucosa inflammation and T1D onset. RESULTS: We show in models of autoimmune T1D a conserved loss of interleukin (IL)-17A, IL-22 and IL-23A in gut mucosa. Intestinal epithelial cell function was altered and gut integrity was impaired. These defects were associated with dysbiosis including progressive loss of SFB. Transfer of diabetogenic T-cells recapitulated these gut alterations, whereas induction of hyperglycaemia with no inflammation failed to do so. Moreover, anti-inflammatory treatment restored gut mucosa and immune cell function and dampened diabetes incidence. CONCLUSION: Our results demonstrate that gut mucosa alterations and dysbiosis in T1D are primarily linked to inflammation rather than hyperglycaemia. Anti-inflammatory treatment preserves gut homeostasis and protective commensal flora reducing T1D incidence.


Assuntos
Bactérias/isolamento & purificação , Diabetes Mellitus Tipo 1/complicações , Disbiose/etiologia , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Animais , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Hiperglicemia/etiologia , Inflamação/etiologia , Mucosa Intestinal/metabolismo , Camundongos
2.
Proc Natl Acad Sci U S A ; 116(48): 24285-24295, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712445

RESUMO

Sporadic colorectal cancer (CRC) is a result of complex interactions between the host and its environment. Environmental stressors act by causing host cell DNA alterations implicated in the onset of cancer. Here we investigate the stressor ability of CRC-associated gut dysbiosis as causal agent of host DNA alterations. The epigenetic nature of these alterations was investigated in humans and in mice. Germ-free mice receiving fecal samples from subjects with normal colonoscopy or from CRC patients were monitored for 7 or 14 wk. Aberrant crypt foci, luminal microbiota, and DNA alterations (colonic exome sequencing and methylation patterns) were monitored following human feces transfer. CRC-associated microbiota induced higher numbers of hypermethylated genes in murine colonic mucosa (vs. healthy controls' microbiota recipients). Several gene promoters including SFRP1,2,3, PENK, NPY, ALX4, SEPT9, and WIF1 promoters were found hypermethylated in CRC but not in normal tissues or effluents from fecal donors. In a pilot study (n = 266), the blood methylation levels of 3 genes (Wif1, PENK, and NPY) were shown closely associated with CRC dysbiosis. In a validation study (n = 1,000), the cumulative methylation index (CMI) of these genes was significantly higher in CRCs than in controls. Further, CMI appeared as an independent risk factor for CRC diagnosis as shown by multivariate analysis that included fecal immunochemical blood test. Consequently, fecal bacterial species in individuals with higher CMI in blood were identified by whole metagenomic analysis. Thus, CRC-related dysbiosis induces methylation of host genes, and corresponding CMIs together with associated bacteria are potential biomarkers for CRC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Epigênese Genética , Microbioma Gastrointestinal/genética , Animais , Estudos de Coortes , Metilação de DNA , Disbiose/genética , Disbiose/microbiologia , Disbiose/patologia , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Regulação da Expressão Gênica , Vida Livre de Germes , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C3H , Regiões Promotoras Genéticas , RNA Ribossômico 16S
3.
Proc Natl Acad Sci U S A ; 113(40): E5934-E5943, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27638207

RESUMO

Diet is among the most important factors contributing to intestinal homeostasis, and basic functions performed by the small intestine need to be tightly preserved to maintain health. Little is known about the direct impact of high-fat (HF) diet on small-intestinal mucosal defenses and spatial distribution of the microbiota during the early phase of its administration. We observed that only 30 d after HF diet initiation, the intervillous zone of the ileum-which is usually described as free of bacteria-became occupied by a dense microbiota. In addition to affecting its spatial distribution, HF diet also drastically affected microbiota composition with a profile characterized by the expansion of Firmicutes (appearance of Erysipelotrichi), Proteobacteria (Desulfovibrionales) and Verrucomicrobia, and decrease of Bacteroidetes (family S24-7) and Candidatus arthromitus A decrease in antimicrobial peptide expression was predominantly observed in the ileum where bacterial density appeared highest. In addition, HF diet increased intestinal permeability and decreased cystic fibrosis transmembrane conductance regulator (Cftr) and the Na-K-2Cl cotransporter 1 (Nkcc1) gene and protein expressions, leading to a decrease in ileal secretion of chloride, likely responsible for massive alteration in mucus phenotype. This complex phenotype triggered by HF diet at the interface between the microbiota and the mucosal surface was reversed when the diet was switched back to standard composition or when mice were treated for 1 wk with rosiglitazone, a specific agonist of peroxisome proliferator-activated receptor-γ (PPAR-γ). Moreover, weaker expression of antimicrobial peptide-encoding genes and intervillous bacterial colonization were observed in Ppar-γ-deficient mice, highlighting the major role of lipids in modulation of mucosal immune defenses.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Intestino Delgado/microbiologia , Intestino Delgado/fisiologia , PPAR gama/metabolismo , Transdução de Sinais , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Ceco/microbiologia , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Microdissecção e Captura a Laser , Masculino , Camundongos Endogâmicos C57BL , Muco/metabolismo , PPAR gama/genética , Fenótipo , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/farmacologia
4.
BMC Genomics ; 18(1): 525, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28697749

RESUMO

BACKGROUND: A restricted set of aerobic bacteria dominated by the Acinetobacter genus was identified in murine intestinal colonic crypts. The vicinity of such bacteria with intestinal stem cells could indicate that they protect the crypt against cytotoxic and genotoxic signals. Genome analyses of these bacteria were performed to better appreciate their biodegradative capacities. RESULTS: Two taxonomically different clusters of Acinetobacter were isolated from murine proximal colonic crypts, one was identified as A. modestus and the other as A. radioresistens. Their identification was performed through biochemical parameters and housekeeping gene sequencing. After selection of one strain of each cluster (A. modestus CM11G and A. radioresistens CM38.2), comparative genomic analysis was performed on whole-genome sequencing data. The antibiotic resistance pattern of these two strains is different, in line with the many genes involved in resistance to heavy metals identified in both genomes. Moreover whereas the operon benABCDE involved in benzoate metabolism is encoded by the two genomes, the operon antABC encoding the anthranilate dioxygenase, and the phenol hydroxylase gene cluster are absent in the A. modestus genomic sequence, indicating that the two strains have different capacities to metabolize xenobiotics. A common feature of the two strains is the presence of a type IV pili system, and the presence of genes encoding proteins pertaining to secretion systems such as Type I and Type II secretion systems. CONCLUSIONS: Our comparative genomic analysis revealed that different Acinetobacter isolated from the same biological niche, even if they share a large majority of genes, possess unique features that could play a specific role in the protection of the intestinal crypt.


Assuntos
Acinetobacter/genética , Acinetobacter/isolamento & purificação , Colo/microbiologia , Genômica , Acinetobacter/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Camundongos , Filogenia , RNA Ribossômico 16S/genética , Recombinases/genética , Sideróforos/metabolismo , Xenobióticos/metabolismo
5.
PLoS Pathog ; 11(3): e1004749, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25794007

RESUMO

Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg) of the lipopolysaccharide (LPS) plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.


Assuntos
Cápsulas Bacterianas/metabolismo , Antígenos O/biossíntese , Shigella sonnei/metabolismo , Shigella sonnei/patogenicidade , Animais , Cápsulas Bacterianas/genética , Técnicas de Silenciamento de Genes , Antígenos O/genética , Coelhos , Shigella sonnei/genética
6.
Proc Natl Acad Sci U S A ; 111(30): E3101-9, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024222

RESUMO

Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in vivo screening using the rabbit ligated ileal loop model. After sequencing transposon insertion sites in 9,250 random mutants, we assembled a library of 1,110 independent mutants, all disrupted in a different gene, that provides a representative view of the L. casei genome. By determining the relative quantity of each of the 1,110 mutants before and after the in vivo challenge, we identified a core of 47 L. casei genes necessary for its establishment in the gut. They are involved in housekeeping functions, metabolism (sugar, amino acids), cell wall biogenesis, and adaptation to environment. Hence we provide what is, to our knowledge, the first global functional genomics analysis of L. casei symbiosis.


Assuntos
Íleo/microbiologia , Lacticaseibacillus casei , Mutação , Animais , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Genômica , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/metabolismo , Mutagênese , Coelhos
8.
Nat Commun ; 15(1): 7702, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231967

RESUMO

The human gut virome, which is mainly composed of bacteriophages, also includes viruses infecting archaea, yet their role remains poorly understood due to lack of isolates. Here, we characterize a temperate archaeal virus (MSTV1) infecting Methanobrevibacter smithii, the dominant methanogenic archaeon of the human gut. The MSTV1 genome is integrated in the host chromosome as a provirus which is sporadically induced, resulting in virion release. Using cryo-electron tomography, we capture several intracellular virion assembly intermediates and confirm that only a small fraction of the host population actively produces virions in vitro. Similar low frequency of induction is observed in a mouse colonization model, using mice harboring a stable consortium of 12 bacterial species (OMM12). Transcriptomic analysis suggests a regulatory lysogeny-lysis switch involving an interplay between viral proteins to maintain virus-host equilibrium, ensuring host survival and viral persistence. Thus, our study sheds light on archaeal virus-host interactions and highlights similarities with bacteriophages in establishing stable coexistence with their hosts in the gut.


Assuntos
Vírus de Archaea , Microbioma Gastrointestinal , Methanobrevibacter , Animais , Humanos , Methanobrevibacter/genética , Methanobrevibacter/metabolismo , Camundongos , Vírus de Archaea/genética , Vírus de Archaea/fisiologia , Vírus de Archaea/ultraestrutura , Genoma Viral/genética , Vírion/ultraestrutura , Lisogenia , Feminino
9.
Nanoscale ; 16(37): 17567-17584, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39225712

RESUMO

The ability of bacteria to interact with their environment is crucial to form aggregates and biofilms, and develop a collective stress resistance behavior. Despite its environmental and medical importance, bacterial aggregation is poorly understood and mediated by few known adhesion structures. Here, we identified a new role for a surface-exposed Escherichia coli protein, YfaL, which can self-recognize and induce bacterial autoaggregation. This process occurs only under acidic conditions generated during E. coli growth in the presence of fermentable sugars. These findings were supported by electrokinetic and atomic force spectroscopy measurements, which revealed changes in the electrostatic, hydrophobic, and structural properties of YfaL-decorated cell surface upon sugar consumption. Furthermore, YfaL-mediated autoaggregation promotes biofilm formation and enhances E. coli resistance to acid stress. The prevalence and conservation of YfaL in environmental and clinical E. coli suggest strong evolutionary selection for its function inside or outside the host. Overall, our results emphasize the importance of environmental parameters such as low pH as physicochemical cues influencing bacterial adhesion and aggregation, affecting E. coli and potentially other bacteria's resistance to environmental stress.


Assuntos
Biofilmes , Proteínas de Escherichia coli , Escherichia coli , Ácidos/química , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Concentração de Íons de Hidrogênio , Estresse Fisiológico , Açúcares/química , Açúcares/metabolismo
10.
Gut Microbes ; 16(1): 2320291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417029

RESUMO

Intratumoral bacteria flexibly contribute to cellular and molecular tumor heterogeneity for supporting cancer recurrence through poorly understood mechanisms. Using spatial metabolomic profiling technologies and 16SrRNA sequencing, we herein report that right-sided colorectal tumors are predominantly populated with Colibactin-producing Escherichia coli (CoPEC) that are locally establishing a high-glycerophospholipid microenvironment with lowered immunogenicity. It coincided with a reduced infiltration of CD8+ T lymphocytes that produce the cytotoxic cytokines IFN-γ where invading bacteria have been geolocated. Mechanistically, the accumulation of lipid droplets in infected cancer cells relied on the production of colibactin as a measure to limit genotoxic stress to some extent. Such heightened phosphatidylcholine remodeling by the enzyme of the Land's cycle supplied CoPEC-infected cancer cells with sufficient energy for sustaining cell survival in response to chemotherapies. This accords with the lowered overall survival of colorectal patients at stage III-IV who were colonized by CoPEC when compared to patients at stage I-II. Accordingly, the sensitivity of CoPEC-infected cancer cells to chemotherapies was restored upon treatment with an acyl-CoA synthetase inhibitor. By contrast, such metabolic dysregulation leading to chemoresistance was not observed in human colon cancer cells that were infected with the mutant strain that did not produce colibactin (11G5∆ClbQ). This work revealed that CoPEC locally supports an energy trade-off lipid overload within tumors for lowering tumor immunogenicity. This may pave the way for improving chemoresistance and subsequently outcome of CRC patients who are colonized by CoPEC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Peptídeos , Policetídeos , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Microambiente Tumoral , Resistencia a Medicamentos Antineoplásicos , Mutagênicos/metabolismo , Recidiva Local de Neoplasia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Policetídeos/metabolismo , Lipídeos
11.
Biosci Rep ; 43(9)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37669144

RESUMO

Gut microbiota plays a key role in the regulation of metabolism and immunity. We investigated the profile of gut microbiota and the impact of dietary intake on gut bacterial distribution in diabetic and healthy Tunisian subjects, aiming to identify a dysbiotic condition, hence opening the way to restore eubiosis and facilitate return to health. In the present research, we enrolled 10 type 1 diabetic (T1D), 10 type 2 diabetic (T2D) patients and 13 healthy (H) subjects. Illumina Miseq technology was used to sequence V3-V4 hypervariable regions of bacterial 16SrRNA gene. Data were analyzed referring to QIIME 2 pipeline. RStudio software was used to explore the role of nutrition in gut bacterial distribution. At the phylum level, we identified an imbalanced gut microbiota composition in diabetic patients marked by a decrease in the proportion of Firmicutes and an increase in the abundance of Bacteroidetes compared with H subjects. We observed higher amounts of Fusobacteria and a decline in the levels of TM7 phyla in T1D patients compared with H subjects. However, we revealed a decrease in the proportions of Verrucomicrobia in T2D patients compared with H subjects. At the genus level, T2D subjects were more affected by gut microbiota alteration, showing a reduction in the relative abundance of Faecalibacterium, Akkermansia, Clostridium, Blautia and Oscillibacter, whereas T1D group shows a decrease in the proportion of Blautia. The gut bacteria distribution was mainly affected by fats and carbohydrates consumption. Gut microbiota composition was altered in Tunisian diabetic patients and affected by dietary habits.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Estado Nutricional , Microbioma Gastrointestinal/genética , Bactérias/genética
12.
Gut Microbes ; 15(2): 2265138, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37842920

RESUMO

Recently, an intestinal dysbiotic microbiota with enrichment in oral cavity bacteria has been described in colorectal cancer (CRC) patients. Here, we characterize and investigate one of these oral pathobionts, the Gram-positive anaerobic coccus Parvimonas micra. We identified two phylotypes (A and B) exhibiting different phenotypes and adhesion capabilities. We observed a strong association of phylotype A with CRC, with its higher abundance in feces and in tumoral tissue compared with the normal homologous colonic mucosa, which was associated with a distinct methylation status of patients. By developing an in vitro hypoxic co-culture system of human primary colonic cells with anaerobic bacteria, we show that P. micra phylotype A alters the DNA methylation profile promoters of key tumor-suppressor genes, oncogenes, and genes involved in epithelial-mesenchymal transition. In colonic mucosa of CRC patients carrying P. micra phylotype A, we found similar DNA methylation alterations, together with significant enrichment of differentially expressed genes in pathways involved in inflammation, cell adhesion, and regulation of actin cytoskeleton, providing evidence of P. micra's possible role in the carcinogenic process.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Firmicutes/genética , Bactérias , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia
13.
Cell Host Microbe ; 30(4): 556-569.e5, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35421351

RESUMO

Abundance and diversity of bacteria and their viral predators, bacteriophages (phages), in the digestive tract are associated with human health. Particularly intriguing is the long-term coexistence of these two antagonistic populations. We performed genome-wide RNA sequencing on a human enteroaggregative Escherichia coli isolate to identify genes differentially expressed between in vitro conditions and in murine intestines. We experimentally demonstrated that four of these differentially expressed genes modified the interactions between E. coli and three virulent phages by either increasing or decreasing its susceptibility/resistance pattern and also by interfering with biofilm formation. Therefore, the regulation of bacterial genes expression during the colonization of the digestive tract influences the coexistence of phages and bacteria, highlighting the intricacy of tripartite relationships between phages, bacteria, and the animal host in intestinal homeostasis.


Assuntos
Bacteriófagos , Animais , Bactérias/genética , Bacteriófagos/fisiologia , Escherichia coli/genética , Expressão Gênica , Genes Bacterianos , Camundongos
14.
Front Microbiol ; 11: 156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194510

RESUMO

The cell surface is the primary recognition site between the bacterium and the host. An operon of three genes, LSEI_0219 (cwaR), LSEI_0220 (cwaS), and LSEI_0221 (ldcA), has been previously identified as required for the establishment of Lactobacillus paracasei in the gut. The genes cwaR and cwaS encode a predicted two-component system (TCS) and ldcA a predicted D-alanyl-D-alanine carboxypeptidase which is a peptidoglycan (PG) biosynthesis enzyme. We explored the functionality and the physiological role of these three genes, particularly their impact on the bacterial cell wall architecture and on the bacterial adaptation to environmental perturbations in the gut. The functionality of CwaS/R proteins as a TCS has been demonstrated by biochemical analysis. It is involved in the transcriptional regulation of several genes of the PG biosynthesis. Analysis of the muropeptides of PG in mutants allowed us to re-annotate LSEI_0221 as a putative L,D-carboxypeptidase (LdcA). The absence of this protein coincided with a decrease of two surface antigens: LSEI_0020, corresponding to p40 or msp2 whose implication in the host epithelial homeostasis has been recently studied, and LSEI_2029 which has never been functionally characterized. The inactivation of each of these three genes induces susceptibility to antimicrobial peptides (hBD1, hBD2, and CCL20), which could be the main cause of the gut establishment deficiency. Thus, this operon is necessary for the presence of two surface antigens and for a suitable cell wall architecture.

15.
Cell Host Microbe ; 28(3): 390-401.e5, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32615090

RESUMO

The ecological dynamics underlying the coexistence between antagonistic populations of bacteria and their viruses, bacteriophages (phages), in the mammalian gut microbiota remain poorly understood. We challenged a murine synthetic bacterial community with phages to study the factors allowing phages-bacteria coexistence. Coexistence was not dependent on the development of phage-resistant clones nor on the ability of phages to extend their host range. Instead, our data suggest that phage-inaccessible sites in the mucosa serve as a spatial refuge for bacteria. From there, bacteria disseminate in the gut lumen where they are predated by luminal phages fostering the presence of intestinal phage populations. The heterogeneous biogeography of microbes contributes to the long-term coexistence of phages with phage-susceptible bacteria. This observation could explain the persistence of intestinal phages in humans as well as the low efficiency of oral phage therapy against enteric pathogens in animal models and clinical trials.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/virologia , Bacteriófagos/fisiologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Trato Gastrointestinal/microbiologia , Mucosa/microbiologia , Animais , Ecossistema , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Vida Livre de Germes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interações Microbianas , Modelos Animais
16.
mBio ; 10(4)2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311881

RESUMO

We have previously identified a crypt-specific core microbiota (CSCM) in the colons of healthy laboratory mice and related wild rodents. Here, we confirm that a CSCM also exists in the human colon and appears to be altered during colon cancer. The colonic microbiota is suggested to be involved in the development of colorectal cancer (CRC). Because the microbiota identified in fecal samples from CRC patients does not directly reflect the microbiota associated with tumor tissues themselves, we sought to characterize the bacterial communities from the crypts and associated adjacent mucosal surfaces of 58 patients (tumor and normal homologous tissue) and 9 controls with normal colonoscopy results. Here, we confirm that bacteria colonize human colonic crypts in both control and CRC tissues, and using laser-microdissected tissues and 16S rRNA gene sequencing, we further show that right and left crypt- and mucosa-associated bacterial communities are significantly different. In addition to Bacteroidetes and Firmicutes, and as with murine proximal colon crypts, environmental nonfermentative Proteobacteria are found in human colonic crypts. Fusobacterium and Bacteroides fragilis are more abundant in right-side tumors, whereas Parvimonas micra is more prevalent in left-side tumors. More precisely, Fusobacterium periodonticum is more abundant in crypts from cancerous samples in the right colon than in associated nontumoral samples from adjacent areas but not in left-side colonic samples. Future analysis of the interaction between these bacteria and the crypt epithelium, particularly intestinal stem cells, will allow deciphering of their possible oncogenic potential.IMPORTANCE Due to the huge number of bacteria constituting the human colon microbiota, alteration in the balance of its constitutive taxa (i.e., dysbiosis) is highly suspected of being involved in colorectal oncogenesis. Indeed, bacterial signatures in association with CRC have been described. These signatures may vary if bacteria are identified in feces or in association with tumor tissues. Here, we show that bacteria colonize human colonic crypts in tissues obtained from patients with CRC and with normal colonoscopy results. Aerobic nonfermentative Proteobacteria previously identified as constitutive of the crypt-specific core microbiota in murine colonic samples are similarly prevalent in human colonic crypts in combination with other anaerobic taxa. We also show that bacterial signatures characterizing the crypts of colonic tumors vary depending whether right-side or left-side tumors are analyzed.


Assuntos
Colo/microbiologia , Colo/patologia , Neoplasias do Colo/etiologia , Neoplasias do Colo/patologia , Microbioma Gastrointestinal , Idoso , Idoso de 80 Anos ou mais , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Neoplasias do Colo/diagnóstico , Disbiose , Feminino , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase em Tempo Real , Carga Tumoral
17.
Trop Med Infect Dis ; 4(3)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31405081

RESUMO

Several diseases and vulnerabilities associated with genetic or microbial factors are more frequent among populations of Oceanian, Non-European, Non-Asian descent (ONENA). ONENA are specific and have long been isolated geographically. To our knowledge, there are no published official, quantitative, aggregated data on the populations impacted by these excess vulnerabilities in Oceania. We searched official census reports for updated estimates of the total population for each of the Pacific Island Countries and Territories (including Australia) and the US State of Hawaii, privileging local official statistical or censual sources. We multiplied the most recent total population estimate by the cumulative percentage of the ONENA population as determined in official reports. Including Australia and the US State of Hawaii, Oceania counts 27 countries and territories, populated in 2016 by approximately 41 M inhabitants (17 M not counting Australia) among which approximately 12.5 M (11.6 M not counting Australia) consider themselves of entire or partial ONENA ancestry. Specific genetic and microbiome traits of ONENA may be unique and need further investigation to adjust risk estimates, risk prevention, diagnostic and therapeutic strategies, to the benefit of populations in the Pacific and beyond.

18.
mBio ; 9(5)2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181250

RESUMO

The gut microbiota contributes to nutrients absorption and metabolism by enterocytes, but the molecular mechanisms involved remain poorly understood, and most conclusions are inferred from studies comparing germfree and conventional animals colonized with diverse bacterial species. We selected two model commensal microorganisms, Escherichia coli and Lactobacillus paracasei, to assess the role of the small-intestinal microbiota in modulating lipid absorption and metabolism by the epithelium. Using an integrated approach encompassing cellular and murine models and combining metabolic parameters measurement, lipid droplet imaging, and gene expression analysis, we demonstrated that under homeostatic conditions, L. paracasei promotes fat storage in enterocytes, whereas E. coli enhances lipid catabolism and reduces chylomicron circulating levels. The Akt/mammalian target of sirolimus (mTOR) pathway is inhibited by both bacterial species in vitro, indicating that several regulatory pathways are involved in the distinct intracellular lipid outcomes associated with each bacterial species. Moreover, soluble bacterial factors partially reproduce the effects observed with live microorganisms. However, reduction of chylomicron circulating levels in E. coli-colonized animals is lost under high-fat-diet conditions, whereas it is potentiated by L. paracasei colonization accompanied by resistance to hypercholesterolemia and excess body weight gain.IMPORTANCE The specific contribution of each bacterial species within a complex microbiota to the regulation of host lipid metabolism remains largely unknown. Using two model commensal microorganisms, L. paracasei and E. coli, we demonstrated that both bacterial species impacted host lipid metabolism in a diet-dependent manner and, notably, that L. paracasei-colonized mice but not E. coli-colonized mice resisted high-fat-diet-induced body weight gain. In addition, we set up cellular models of fatty acid absorption and secretion by enterocytes cocultured with bacteria and showed that, in vitro, both L. paracasei and E. coli inhibited lipid secretion, through increased intracellular fat storage and enhanced lipid catabolism, respectively.


Assuntos
Enterócitos/metabolismo , Escherichia coli/fisiologia , Interações entre Hospedeiro e Microrganismos , Lacticaseibacillus paracasei/fisiologia , Metabolismo dos Lipídeos , Animais , Quilomícrons/sangue , Dieta Hiperlipídica , Feminino , Microbioma Gastrointestinal , Lipídeos/biossíntese , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Simbiose , Serina-Treonina Quinases TOR/fisiologia , Aumento de Peso
19.
mBio ; 8(5)2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042502

RESUMO

We identified a crypt-specific core microbiota (CSCM) dominated by strictly aerobic, nonfermentative bacteria in murine cecal and proximal colonic (PC) crypts and hypothesized that, among its possible functions, it may affect epithelial regeneration. In the present work, we isolated representative CSCM strains using selective media based upon our initial 16S rRNA-based molecular identification (i.e., Acinetobacter, Delftia, and Stenotrophomonas). Their tropism for the crypt was confirmed, and their influence on epithelial regeneration was demonstrated in vivo by monocolonization of germfree mice. We also showed that lipopolysaccharide (LPS), through its endotoxin activity, was the dominant bacterial agonist controlling proliferation. The relevant molecular mechanisms were analyzed using colonic crypt-derived organoids exposed to bacterial sonicates or highly purified LPS as agonists. We identified a Toll-like receptor 4 (TLR4)-dependent program affecting crypts at different stages of epithelial differentiation. LPS played a dual role: it repressed cell proliferation through RIPK3-mediated necroptosis of stem cells and cells of the transit-amplifying compartment and concurrently enhanced cell differentiation, particularly the goblet cell lineage.IMPORTANCE The LPS from crypt-specific core microbiota controls intestinal epithelium proliferation through necroptosis of stem cells and enhances cell differentiation, mainly the goblet cell lineage.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/fisiologia , Bactérias Gram-Negativas/metabolismo , Mucosa Intestinal/microbiologia , Lipopolissacarídeos/metabolismo , Células-Tronco/fisiologia , Animais , Apoptose , Células Cultivadas , Colo/microbiologia , Células Epiteliais/efeitos dos fármacos , Microbioma Gastrointestinal , Camundongos , Células-Tronco/efeitos dos fármacos
20.
Artigo em Inglês | MEDLINE | ID: mdl-27672151

RESUMO

Metagenomic analysis of the human intestinal microbiome has provided a wealth of information that allowed an exceptionally detailed description of its microbial content and physiological potential. It also set the basis for studies allowing correlation of alterations in the balance of this microbiota and the occurrence of a certain number of emerging diseases, such as inflammatory bowel diseases, obesity and diabetes, and possibly colorectal cancer. The time has come to give the intestinal microbiota in symbiosis with its host an experimental dimension. This brief review summarizes our attempt at developing a cellular microbiology of the mutualistic symbiosis established between the gut microbiota and the host intestinal surface. Particular attention is paid to the intestinal crypt, due to its role in epithelial regeneration.This article is part of the themed issue 'The new bacteriology'.


Assuntos
Microbioma Gastrointestinal/fisiologia , Intestinos/microbiologia , Intestinos/fisiologia , Simbiose , Homeostase , Humanos , Intestinos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA