Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(3): 1377-1384, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35015526

RESUMO

A new Y-based metal-organic framework (MOF) GR-MOF-6 with a chemical formula of {[YL(DMF)2]·(DMF)}n {H3L = 5-[(4-carboxyphenyl)ethynyl] isophthalic acid; DMF = N,N-dimethylformamide} has been prepared by a solvothermal route. Structural characterization reveals that this novel material is a three-dimensional MOF in which the coordination of the tritopic ligand to Y(III) metal ions leads to an intercrossing channel system extending over three dimensions. This material has proven to be a very efficient catalyst in the cyanosilylation of carbonyls, ranking second in catalytic activity among the reported rare earth metal-based MOFs described so far but with the lowest required catalyst loading. In addition, its electrophoretic behavior has been studied in depth, providing a zero-charge point between pH 4 and 5, a peak electrophoretic mobility of -1.553 µm cm V-1 s-1, and a ζ potential of -19.8 mV at pH 10.

2.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432174

RESUMO

Due to the fast, emerging development of antibiotic-resistant bacteria, the need for novel, efficient routes to battle these pathogens is crucial; in this scenario, metal-organic frameworks (MOFs) are promising materials for combating them effectively. Herein, a novel Cu-MOF-namely 1-that displays the formula [Cu3L2(DMF)2]n (DMF = N,N-dimethylformamide) is described, synthesized by the combination of copper(II) and 3,4-dihydroxybenzoic acid (H3L)-both having well-known antibacterial properties. The resulting three-dimensional structure motivated us to study the antibacterial activity, adsorptive capacity and processability of the MOF in the form of pellets and membranes as a proof-of-concept to evaluate its future application in devices.


Assuntos
Antibacterianos , Cobre , Cobre/química , Ligantes , Adsorção , Antibacterianos/farmacologia
3.
Sci Technol Adv Mater ; 17(1): 541-553, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877902

RESUMO

Controlling the chemistry on the surface of new carbon materials is a key factor to widen the range of their applicability. In this paper we show a grafting methodology of polyalkylamines to the surface of carbon nanomaterials, in particular, carbon nanotubes and a carbon black. The aim of this work is to reach large degrees of covalent functionalization with hyperbranched polyethyleneimines (HBPEIs) and to efficiently preserve the strong chelating properties of the HBPEIs when they are fixed to the surface of these carbon materials. This functionalization opens new possibilities of using these carbon nanotubes-based hybrids. The results show that the HBPEIs are covalently attached to the carbon materials, forming hybrids. These hybrids emerge from the reaction of amine functions of the HBPEIs with carbonyls and carboxylic anhydrides of the carbon surface which become imine and imide bonds. Thus, due to the nature of these bonds, the pre-oxidized samples with relevant number of C=O groups showed an increase in the degree of functionalization with the HBPEIs. Furthermore, both the acid-base properties and the coordination capacity for metal ions of the hybrids are equivalent to that of the free HBPEIs in solution. This means that the chemical characteristics of the HBPEIs have been efficiently transferred to the hybrids. To reach this conclusion we have developed a novel procedure to assess the acid-base and the coordination properties of the hybrids (solids) by means of potentiometric titration. The good agreement of the values obtained for the hybrids and for the free HBPEIs in aqueous solution supports the reliability of the procedure. Moreover, the high capacity of the hybrids to capture Ni2+ by complexation opens new possibilities of using these hybrids to capture high-value metal ions such as Pd2+ and Pt2+.

4.
Dalton Trans ; 51(46): 17844-17857, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36354373

RESUMO

A guest@host POM@ZIF nanocomposite-PW11Co@ZIF-67-has been synthesized using an in situ strategy. This new nanocomposite exhibits (i) individually ZIF-67-cage-confined POM units, (ii) structural defects in the ZIF-67 host induced by the POM, and (iii) charge transfer from the ZIF-67 to the confined POM. In addition, it has served as a template to produce a set of derived samples by applying thermal treatment at various temperatures (200, 400, 500, 600, and 950 °C) under a N2 flow. We have used multiple characterization techniques, ICP-OES, CHNS analysis, XPS, ATR-IR, PXRD, Raman spectroscopy, N2/CO2 adsorption analysis, CV, and TEM/EDS, to fully assess the thermally-induced variation tendencies. The first two derivatives-D200 and D400-show the same nanoarrangement as the PW11Co@ZIF-67 precursor, although with incipient signs of both POM and ZIF-67 structural decompositions. The following samples-D500, D600, and D950-exhibit a carbonaceous nature consisting of C-embedded compositionally complex nanoparticles that involve Co and W present as diverse species, metallic/oxide/phosphate/phosphide. D500 presents the best intrinsic electrochemistry, probably due to the high proportion of pyridinic N moieties doping its C matrix combined with small-sized and highly dispersed Co-enriched nanoparticles. This study focuses on the need for a thorough physicochemical characterization of this class of highly nanostructured materials with a view to exploring their application in electrocatalysis.

5.
Commun Chem ; 4(1): 174, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36697873

RESUMO

Photo-induced darkening of red cinnabar (HgS) has attracted the interest of many researchers as it drastically impacts the visual perception of artworks. Darkening has commonly been related to metallic mercury (Hg0) formation in the presence of chlorides. Based on the study of UV-aged cinnabar pigment and tempera paint we propose an alternative pathway for the blackening reaction of cinnabar, considering its semiconductor properties and pigment-binder interactions. We demonstrate that darkening is caused by the oxidation of cinnabar to mercury sulfates and subsequent reduction to Hg0 via photo-induced electron transfer without the involvement of chlorides, and provide direct evidence for the presence of Hg0 on UV-aged tempera paint. Photooxidation also affects the organic binder, causing a competing depletion of photo-generated holes and consequently limiting but not impeding mercury sulfate formation and subsequent reduction to Hg0. In addition, organics provide active sites for Hg0 sorption, which is ultimately responsible for the darkening of cinnabar-based paint.

6.
Chemistry ; 16(3): 931-7, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-19938011

RESUMO

The novel coordination polymers [Cu(Hoxonic)(H(2)O)](n) (1) and [Cu(Hoxonic)(bpy)(0.5)](n)1.5 n H(2)O (2 subsetH(2)O) (H(3)oxonic: 4,6-dihydroxy-1,3,5-triazine-2-carboxylic acid; bpy: 4,4'-bipyridine) have been isolated and structurally characterised by ab initio X-ray powder diffraction. The dense phase 1 contains 1D zig-zag chains in which Hoxonic dianions bridge square-pyramidal copper(II) ions, apically coordinated by water molecules. On the contrary, 2 subsetH(2)O, prepared by solution and solventless methods, is based on 2D layers of octahedral copper(II) ions bridged by Hoxonic ligands, further pillared by bpy spacers. The resulting pro-porous 3D network possesses small hydrated cavities. The reactivity, thermal, magnetic and adsorptive properties of these materials have been investigated. Notably, the adsorption studies on 2 show that this material possesses unusual adsorption behaviour. Indeed, guest uptake is facilitated by increasing the thermal energy of both the guest and the framework. Thus, neither N(2) at 77 K nor CO(2) at 195 K are incorporated, and CH(4) is only minimally adsorbed at 273 K and high pressures (0.5 mmol g(-1) at 2500 kPa). By contrast, CO(2) is readily incorporated at 273 K (up to 2.5 mmol g(-1) at 2500 kPa). The selectivity of 2 towards CO(2) over CH(4) has been investigated by means of variable-temperature zero coverage adsorption experiments and measurement of breakthrough curves of CO(2)/CH(4) mixtures. The results show the highly selective incorporation of CO(2) in 2, which can be rationalised on the basis of the framework flexibility and polar nature of its voids.

7.
Chemistry ; 14(32): 9890-901, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18846600

RESUMO

The novel porous [{M(F-pymo)(2)}(n)]2.5n H(2)O coordination networks (M=Co, Zn; F-pymo=5-fluoropyrimidin-2-olate), possessing sodalitic topology, have been synthesised and structurally characterised by means of powder diffraction methods. Thermodiffractometry demonstrated their plasticity: when heated up to 363 K, they reversibly transform into three-dimensional dehydrated [{M(F-pymo)(2)}(n)] species, with significantly different lattice parameters. Further heating induces irreversible polymorphic transformations into layered phases, in which the original MN(4) coordination sphere changes into an MN(3)O one. A mixed-metal phase, [{Co(x)Zn(1-x)(F-pymo)(2)}(n)]2.5n H(2)O, was also prepared, showing that zinc is preferentially inserted, when starting from a Co/Zn reagent ratio of 1:1. The solid-gas adsorption properties of the anhydrous 3D frameworks have been explored towards N(2), H(2) (77 K) and CH(4), CO(2) (273 K). These results show that these materials permit the diffusion of CO(2) molecules only. Remarkably, the CO(2) adsorption process for the [{Co(F-pymo)(2)}(n)] network proceeds in two steps: the first step takes place at low pressures (<600 kPa) and the second one above a threshold pressure of 600 kPa. By contrast, the [{Zn(F-pymo)(2)}(n)] network only permits CO(2) diffusion by applying pressures above 900 kPa. This type of behaviour is typical of porous networks with gated channels. The high CO(2) selectivity of these systems over the rest of the essayed probe gases is explained in terms of flexibility and polarity of the porous network. Finally, the magnetic studies on the Co(II) systems reveal that the as synthesised [{Co(F-pymo)(2)}(n)]2.5n H(2)O material behaves as an antiferromagnet with a T(N) of about 29 K. At variance, the [{Co(F-pymo)(2)}(n)] layered phase shows an unusually weak ferromagnetic ordering below 17 K, arising from a spin-canting phenomenon.

8.
J Phys Chem B ; 110(23): 11327-33, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16771403

RESUMO

Activated carbon materials have been prepared by pyrolysis of plasma pretreated recycled PET. The obtained carbon materials have been texturally characterized by N2 (77 K) and CO2 (273 K) adsorption. Atomic force microscopy (AFM) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) have been used to analyze the surface of the treated precursors. Carbon materials obtained by He, N2, and CO2 plasma pretreatments (4 min) of the precursor and subsequent pyrolysis have shown a higher adsorption capacity than the corresponding chars (untreated pyrolised PET). This effect seems to be related to the elimination by the plasma treatments of low-molecular-weight products in the precursor, which are responsible for the formation of amorphous carbon deposits during the carbonization that blocks the porosity. Longer periods of treatment (15 min) do not favor the opening of the microporosity because cross-linking reactions in the precursor producing high molecular weight deposits prevail. The development of porosity is less relevant if oxygen plasma is used, as a considerable amount of oxygen functionalities are also formed. These groups can decompose during pyrolysation producing the above-mentioned amorphous carbon deposits. The textural characteristics of the carbon materials obtained after 4 min of plasma treatment on the precursor are very similar to those obtained after 4 h of CO2 (1073 K) activation of the same char. Therefore, this method can be an alternative to avoid the burnoff and high energy cost of the activation step.

9.
Chem Commun (Camb) ; 49(96): 11329-31, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-24162648

RESUMO

The synthesis of a new MOF with Cu2 paddle-wheels connected to glutarate and 1,3-bis(4-pyridyl)propane linkers has been explored. Experimental gas adsorption measurements reveal that the MOF is essentially non-porous to methane whereas it presents a type III isotherm upon CO2 adsorption, leading to high capacity and outstanding CO2 selectivity.

10.
Langmuir ; 20(22): 9856-60, 2004 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-15491225

RESUMO

We have carried out a percolation analysis of the adsorption of ethane and nitrogen in SBA-2, a structured mesoporous silica consisting of a hexagonal close-packed (hcp) array of spherical cavities connected by cylindrical channels. Our analysis explains the different uptakes of nitrogen and ethane in terms of the greater accessibility of the network to the smaller nitrogen molecule. The analysis also allows us to quantify the connectivity of the SBA-2 pore network. The effective coordination number of the cavities, defined as the average number of channels per cavity that are large enough to allow nitrogen to pass, is 4.9, much less than the theoretical maximum value of 12. Taking into account only the smaller set of channels large enough to admit ethane, the effective coordination number is 1.8, just above the percolation threshold of the network.

11.
Langmuir ; 20(18): 7653-8, 2004 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-15323515

RESUMO

We have measured the adsorption of methane and ethane to high pressure on SBA-2, a structured mesoporous silica composed of spheres connected by narrow channels. The experimental data were analyzed by carrying out Monte Carlo simulations of adsorption in pore structure models of different complexity and then adjusting the parameters of the models to match the Monte Carlo results to the experimental data. We found that a model based on single-sized spherical cavities was inadequate and that it is necessary to explicitly account for the interconnecting channels. Further, we found that despite the basic regularity of the SBA-2 structure, it is necessary to allow for a distribution of the sizes of both the cavities and the channels. These size distributions were obtained by fitting the parameters of the model to the experimental adsorption data, revealing detailed structural information not previously known for this material. The channels were found to be 5-15 A in diameter, while the cavities were 40-50 A in diameter. There is some evidence that the distribution of channel sizes leads to a percolation effect whereby the pore structure is not equally accessible to all adsorptives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA