Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Acta Neuropathol ; 138(6): 1053-1074, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31428936

RESUMO

Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Epigênese Genética , Glioma/metabolismo , Metiltransferases/metabolismo , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Metilação de DNA , Humanos , Metiltransferases/genética , Camundongos Nus , Proteínas Musculares/genética , Transplante de Neoplasias , RNA Ribossômico 28S
3.
Cancer Lett ; 447: 86-92, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30677446

RESUMO

Somatic epigenetic inactivation of the DNA repair protein O6-methylguanine DNA methyltransferase (MGMT) is frequent in colorectal cancer (CRC); however, its involvement in CRC predisposition remains unexplored. We assessed the role and relevance of MGMT germline mutations and epimutations in familial and early-onset CRC. Mutation and promoter methylation screenings were performed in 473 familial and/or early-onset mismatch repair-proficient nonpolyposis CRC cases. No constitutional MGMT inactivation by promoter methylation was observed. Of six rare heterozygous germline variants identified, c.346C > T (p.H116Y) and c.476G > A (p.R159Q), detected in three and one families respectively, affected highly conserved residues and showed segregation with cancer in available family members. In vitro, neither p.H116Y nor p.R159Q caused statistically significant reduction of MGMT repair activity. No evidence of somatic second hits was found in the studied tumors. Case-control data showed over-representation of c.346C > T (p.H116Y) in familial CRC compared to controls, but no overall association of MGMT mutations with CRC predisposition. In conclusion, germline mutations and constitutional epimutations in MGMT are not major players in hereditary CRC. Nevertheless, the over-representation of c.346C > T (p.H116Y) in our familial CRC cohort warrants further research.


Assuntos
Neoplasias Colorretais/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Células Germinativas/fisiologia , Mutação em Linhagem Germinativa/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Metilação de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Adulto Jovem
4.
JCI Insight ; 52019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30843871

RESUMO

The endoplasmic reticulum (ER) of cancer cells needs to adapt to the enhanced proteotoxic stress associated with the accumulation of unfolded, misfolded and transformation-associated proteins. One way by which tumors thrive in the context of ER stress is by promoting ER-Associated Degradation (ERAD), although the mechanisms are poorly understood. Here, we show that the Small p97/VCP Interacting Protein (SVIP), an endogenous inhibitor of ERAD, undergoes DNA hypermethylation-associated silencing in tumorigenesis to achieve this goal. SVIP exhibits tumor suppressor features and its recovery is associated with increased ER stress and growth inhibition. Proteomic and metabolomic analyses show that cancer cells with epigenetic loss of SVIP are depleted in mitochondrial enzymes and oxidative respiration activity. This phenotype is reverted upon SVIP restoration. The dependence of SVIP hypermethylated cancer cells on aerobic glycolysis and glucose was also associated with sensitivity to an inhibitor of the glucose transporter GLUT1. This could be relevant to the management of tumors carrying SVIP epigenetic loss, because these occur in high-risk patients who manifest poor clinical outcomes. Overall, our study provides insights into how epigenetics helps deal with ER stress and how SVIP epigenetic loss in cancer may be amenable to therapies that target glucose transporters.


Assuntos
Reprogramação Celular/fisiologia , Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Epigenômica , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Animais , Carcinogênese , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reprogramação Celular/genética , Metilação de DNA , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Transportador de Glucose Tipo 1 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/farmacologia , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Neoplasias/genética , Fenótipo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/farmacologia , Proteômica
5.
Oncotarget ; 9(49): 29208-29219, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-30018746

RESUMO

Noncoding RNAs (ncRNAs), such as microRNAs and long noncoding RNAs (lncRNAs), participate in cellular transformation. Work done in the last decade has also demonstrated that ncRNAs with growth-inhibitory functions can undergo promoter CpG island hypermethylation-associated silencing in tumorigenesis. Herein, we wondered whether circular RNAs (circRNAs), a type of RNA transcripts lacking 5'-3' ends and forming closed loops that are gaining relevance in cancer biology, are also a target of epigenetic inactivation in tumors. To tackle this issue, we have used cancer cells genetically deficient for the DNA methyltransferase enzymes in conjuction with circRNA expression microarrays. We have found that the loss of DNA methylation provokes a release of circRNA silencing. In particular, we have identified that promoter CpG island hypermethylation of the genes TUSC3 (tumor suppressor candidate 3), POMT1 (protein O-mannosyltransferase 1), ATRNL1 (attractin-like 1) and SAMD4A (sterile alpha motif domain containing 4A) is linked to the transcriptional downregulation of both linear mRNA and the hosted circRNA. Although some circRNAs regulate the linear transcript, we did not observe changes in TUSC3 mRNA levels upon TUSC3 circ104557 overexpression. Interestingly, we found circRNA-mediated regulation of target miRNAs and an in vivo growth inhibitory effect upon TUSC3 circ104557 transduction. Data mining for 5'-end CpG island methylation of TUSC3, ATRNL1, POMT1 and SAMD4A in cancer cell lines and primary tumors showed that the epigenetic defect was commonly observed among different tumor types in association with the diminished expression of the corresponding transcript. Our findings support a role for circRNA DNA methylation-associated loss in human cancer.

6.
Epigenetics ; 12(5): 323-339, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27911230

RESUMO

Aberrations in the epigenetic landscape are a hallmark of cancer. Alterations in enzymes that are "writers," "erasers," or "readers" of histone modification marks are common. Bromodomains are "readers" that bind acetylated lysines in histone tails. Their most important function is the regulation of gene transcription by the recruitment of different molecular partners. Moreover, proteins containing bromodomains are also epigenetic regulators, although little is known about the specific function of these domains. In recent years, there has been increasing interest in developing small molecules that can target specific bromodomains. First, this has helped clarify biological functions of bromodomain-containing proteins. Secondly, it opens a new front for combatting cancer. In this review we will describe the structures and mechanisms associated with Bromodomain and Extra-Terminal motif (BET) inhibitors and non-BET inhibitors, their current status of development, and their promising role as anti-cancer agents.


Assuntos
Epigênese Genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Nucleares/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Cromatina/efeitos dos fármacos , Histona Acetiltransferases , Chaperonas de Histonas , Código das Histonas/efeitos dos fármacos , Humanos , Lisina/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Domínios Proteicos/efeitos dos fármacos
7.
Oncotarget ; 8(31): 51621-51629, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881673

RESUMO

BET bromodomain inhibitors, which have an antitumoral effect against various solid cancer tumor types, have not been studied in detail in luminal breast cancer, despite the prevalence of this subtype of mammary malignancy. Here we demonstrate that the BET bromodomain inhibitor JQ1 exerts growth-inhibitory activity in human luminal breast cancer cell lines associated with a depletion of the C-MYC oncogene, but does not alter the expression levels of the BRD4 bromodomain protein. Interestingly, expression microarray analyses indicate that, upon JQ1 administration, the antitumoral phenotype also involves downregulation of relevant breast cancer oncogenes such as the Breast Carcinoma-Amplified Sequence 1 (BCAS1) and the PDZ Domain-Containing 1 (PDZK1). We have also applied these in vitro findings in an in vivo model by studying a transgenic mouse model representing the luminal B subtype of breast cancer, the MMTV-PyMT, in which the mouse mammary tumor virus promoter is used to drive the expression of the polyoma virus middle T-antigen to the mammary gland. We have observed that the use of the BET bromodomain inhibitor for the treatment of established breast neoplasms developed in the MMTV-PyMT model shows antitumor potential. Most importantly, if JQ1 is given before the expected time of tumor detection in the MMTV-PyMT mice, it retards the onset of the disease and increases the survival of these animals. Thus, our findings indicate that the use of bromodomain inhibitors is of great potential in the treatment of luminal breast cancer and merits further investigation.

8.
Epigenetics ; 10(5): 446-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942103

RESUMO

The Barcelona Conference on Epigenetics and Cancer (BCEC) was held in Barcelona, Spain, on October 1(st) and 2(nd), 2014. The meeting was co-organized by the Cancer Epigenetics and Biology Program (PEBC-IDIBELL) and B·Debate, an initiative of Biocat, with the support of "la Caixa" Foundation. The scientific committee was comprised of leading scientists in the field of epigenetics: Dr. Manel Esteller, director of PEBC-IDIBELL, Dr. Alejandro Vaquero and Dr. Esteban Ballestar, from PEBC-IDIBELL, Juan Ausió from the University of Victoria (Canada), and Marcus Buschbeck, from the Institute of Predictive and Personalized Medicine of Cancer (IMPPC), as BCEC series coordinator. This meeting was the second edition of the BCEC series, which was launched by 5 leading Barcelonan institutes to bring together leading investigators in the fields of epigenetics and chromatin research. The topics discussed during the meeting included the current challenges, opportunities, and perspectives surrounding the study of histone modifications (focusing in acetylation), chromatin structure and gene expression, and the involvement of histone acetylation in physiology and diseases, such as cancer or neurological diseases.


Assuntos
Epigênese Genética , Histonas/metabolismo , Neoplasias/genética , Acetilação , Animais , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Doenças do Sistema Nervoso/genética , Espanha
9.
Cancer Res ; 75(18): 3936-45, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26208904

RESUMO

Recent efforts to sequence human cancer genomes have highlighted that point mutations in genes involved in the epigenetic setting occur in tumor cells. Small cell lung cancer (SCLC) is an aggressive tumor with poor prognosis, where little is known about the genetic events related to its development. Herein, we have identified the presence of homozygous deletions of the candidate histone acetyltransferase KAT6B, and the loss of the corresponding transcript, in SCLC cell lines and primary tumors. Furthermore, we show, in vitro and in vivo, that the depletion of KAT6B expression enhances cancer growth, while its restoration induces tumor suppressor-like features. Most importantly, we demonstrate that KAT6B exerts its tumor-inhibitory role through a newly defined type of histone H3 Lys23 acetyltransferase activity.


Assuntos
Carcinoma de Células Pequenas/enzimologia , Histona Acetiltransferases/fisiologia , Neoplasias Pulmonares/enzimologia , Proteínas de Neoplasias/fisiologia , Acetilação , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Carcinoma de Células Pequenas/tratamento farmacológico , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Resistencia a Medicamentos Antineoplásicos , Deleção de Genes , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Xenoenxertos , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Irinotecano , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Mensageiro/genética , RNA Neoplásico/genética , RNA Interferente Pequeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA