Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833617

RESUMO

There is a growing interest in using unmanned aerial vehicles (UAVs) in the most diverse application areas from agriculture to remote sensing, that determine the need to project and define mission profiles of the UAVs. In addition, solar photovoltaic energy increases the flight autonomy of this type of aircraft, forming the term Solar UAV. This study proposes an extended methodology for sizing Solar UAVs that take off from a runway. This methodology considers mission parameters such as operating location, altitude, flight speed, flight endurance, and payload to sizing the aircraft parameters, such as wingspan, area of embedded solar cells panels, runway length required for takeoff and landing, battery weight, and the total weight of the aircraft. Using the Python language, we developed a framework to apply the proposed methodology and assist in designing a Solar UAV. With this framework, it was possible to perform a sensitivity analysis of design parameters and constraints. Finally, we performed a simulation of a mission, checking the output parameters.

2.
Appl Opt ; 51(20): 4841-51, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22781263

RESUMO

In this paper, we report on the development of an intensity-modulated fiber-optic sensor for angular displacement measurement. This sensor was designed to present high sensitivity, linear response, and wide bandwidth and, furthermore, to be simple and low cost. The sensor comprises two optical fibers, a positive lens, a reflective surface, an optical source, and a photodetector. A mathematical model was developed to determine and simulate the static characteristic curve of the sensor and to compare different sensor configurations regarding the core radii of the optical fibers. The simulation results showed that the sensor configurations tested are highly sensitive to small angle variation (in the range of microradians) with nonlinearity less than or equal to 1%. The normalized sensitivity ranges from (0.25×V(max)) to (2.40×V(max)) mV/µrad (where V(max) is the peak voltage of the static characteristic curve), and the linear range is from 194 to 1840 µrad. The unnormalized sensitivity for a reflective surface with reflectivity of 100% was measured as 7.7 mV/µrad. The simulations were compared with experimental results to validate the mathematical model and to define the most suitable configuration for ultrasonic detection. The sensor was tested on the characterization of a piezoelectric transducer and as part of a laser ultrasonics setup. The velocities of the longitudinal, shear, and surface waves were measured on aluminum samples as 6.43, 3.17, and 2.96 mm/µs, respectively, with an error smaller than 1.3%. The sensor, an alternative to piezoelectric or interferometric detectors, proved to be suitable for detection of ultrasonic waves and to perform time-of-flight measurements and nondestructive inspection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA