Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(11): 18072-18074, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381525

RESUMO

Temporal modulation of material parameters provides a new degree of freedom for metamaterials, metasurfaces and wave-matter interactions as a whole. In time-varying media the electromagnetic energy may not be conserved, and the time reversal symmetry may be broken, which may lead to novel physical effects with potential applications. Currently, theoretical and experimental aspects of this field are rapidly advancing, expanding our understanding of wave propagation in such complex spatiotemporal platforms. This field promises novel possibilities and directions in research, innovation and exploration.

2.
Opt Express ; 30(24): 43678-43690, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523061

RESUMO

In this manuscript, we present high spatial resolution focusing of electromagnetic waves at telecommunication wavelengths (λ0 = 1.55 µm) by using high-refractive index mesoscale dielectrics placed at the end of an optical fiber. Our approach exploits photonic nanojets (PNJs) to achieve high-intensity, spatially narrow focal spots. The response of the device is evaluated in detail considering 2-dimensional (2D) and 3-dimensional (3D) configurations using high-index mesoscale cylindrical and spherical dielectrics, respectively, placed on top of an optical fiber. It is shown how the PNJs can be shifted towards the output surface of the mesoscale high-index dielectric by simply truncating its 2D/3D cylindrical/spherical output profile. With this setup, a PNJ with a high transversal resolution is obtained using the 2D/3D engineered mesoscale dielectric particles achieving a Full-Width at Half-Maximum of FWHM = 0.28λ0 (2D truncated dielectric), and FWHMy = 0.17λ0 and FWHMx = 0.21λ0 (3D truncated dielectric). The proposed structure may have potential in applications where near-field high spatial resolution is required, such as in sensing and imaging systems.

3.
Nano Lett ; 18(11): 7389-7394, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30257094

RESUMO

We report a large-area fabrication method to prepare chiral substrates patterned with arrays of multilayer, three-dimensional nanostructures using a combination of nanoimprint lithography and glancing angle deposition. Several structures are successfully fabricated using this method, including L-shaped, twisted arc and trilayer twisted Au nanorod structures, demonstrating its generality. As one typical example, arrays of L-shaped nanostructures, consisting of two layers of orthogonally oriented Au nanorods separated by a Ge dielectric layer in the thickness direction, exhibit giant optical chirality in the infrared region with an experimentally achieved g-factor as high as 0.38. Electromagnetic simulations show that the optical chirality results from plasmon hybridization between the two orthogonal Au segments. To demonstrate scalability, a 1 cm2 chiral substrate is fabricated with uniform chiral optical property. This method combines both high throughput and precise geometrical control and is therefore promising for applications of chiral metamaterials.

4.
Opt Express ; 21(7): 9156-66, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23572004

RESUMO

An epsilon-near-zero graded-index converging lens with planar faces is proposed and analyzed. Each perfectly-electric conducting (PEC) waveguide comprising the lens operates slightly above its cut-off frequency and has the same length but different cross-sectional dimensions. This allows controlling individually the propagation constant and the normalized characteristic impedance of each waveguide for the desired phase front at the lens output while Fresnel reflection losses are minimized. A complete theoretical analysis based on the waveguide theory and Fermat's principle is provided. This is complemented with numerical simulation results of two-dimensional and three-dimensional lenses, made of PEC and aluminum, respectively, and working in the terahertz regime, which show good agreement with the analytical work.


Assuntos
Lentes , Radiação Terahertz , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
5.
Sci Rep ; 13(1): 13126, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573358

RESUMO

Electromagnetic wave-based analogue computing has become an interesting computing paradigm demonstrating the potential for high-throughput, low power, and parallel operations. In this work, we propose a technique for the calculation of derivatives of temporal signals by exploiting transmission line techniques. We consider multiple interconnected waveguides (with some of them being closed-ended stubs) forming junctions. The transmission coefficient of the proposed structure is then tailored by controlling the length and number of stubs at the junction, such that the differentiation operation is applied directly onto the envelope of an incident signal sinusoidally modulated in the time domain. The physics behind the proposed structure is explained in detail and a full theoretical description of this operation is presented, demonstrating how this technique can be used to calculate higher order or even fractional temporal derivatives. We envision that these results may enable the development of further time domain wave-based analogue processors by exploiting waveguide junctions, opening new opportunities for wave-based single operators and systems.

6.
ACS Omega ; 8(21): 18882-18890, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273599

RESUMO

A long-standing issue for microfluidic impedance cytometry devices is the accuracy in determining the size of cells during counting and measurements. In this paper, we introduce a novel design that produces a homogeneous electric field in the sensing region and demonstrates higher accuracy than traditional designs in cell counting and sizing, reducing the reliance on cell focusing and signal postprocessing. The concept is validated, and the increased accuracy of the device over traditional designs is demonstrated through the use of finite element simulations to generate suitable data sets for particle trajectories and model expected signal variations.

7.
Light Sci Appl ; 11(1): 22, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35067682

RESUMO

MXenes, an emerging class of two-dimensional materials, exhibit characteristics that promise significant potential for their use in next generation optoelectronic sensors. An interplay between interband transitions and boundary effects offer the potential to tune the plasma frequencies over a large spectral range from the near-infrared to the mid-infrared. This tuneability along with the 'layered' nature of the material not only offer the flexibility to produce plasmon resonances across a wide range of wavelengths, but also add a degree of freedom to the sensing mechanism by allowing the plasma frequency to be modulated. Here we show, numerically, that MXenes can support plasmons in the telecommunications frequency range and that surface plasmon resonances can be excited on a standard MXene coated side polished optical fiber. Thus, presenting the tantalising prospect of highly selective distributed optical fiber sensor networks.

8.
Sci Rep ; 12(1): 894, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042917

RESUMO

Controlling and manipulating the propagation of surface plasmons has become a field of intense research given their potential in a wide range of applications, such as plasmonic circuits, optical trapping, sensors, and lensing. In this communication, we exploit classical optics techniques to design and evaluate the performance of plasmonic lenses with meniscus-like geometries. To do this, we use an adapted lens maker equation that incorporates the effective medium concepts of surface plasmons polaritons travelling in dielectric-metal and dielectric-dielectric-metal configurations. The design process for such plasmonic meniscus lenses is detailed and two different plasmonic focusing structures are evaluated: a plasmonic lens with a quasi-planar output surface and a plasmonic meniscus lens having a convex-concave input-output surface, respectively. The structures are designed to have an effective focal length of 2λ0 at the visible wavelength of 633 nm. A performance comparison of the two plasmonic lenses is shown, demonstrating improvements to the power enhancement, with a 22% and 16.5% increase when using 2D (ideal) or 3D (realistic plasmonic) meniscus designs, respectively, compared to the power enhancement obtained with convex-planar lenses. It is also shown that the depth of focus of the focal spot presents a 19.8% decrease when using meniscus lenses in 2D and a 34.3% decrease when using the proposed 3D plasmonic meniscus designs. The broadband response of a plasmonic meniscus lens (550-750 nm wavelength range) is also studied along with the influence of potential fabrication errors on the generated effective focal length. The proposed plasmonic lenses could be exploited as alternative focusing devices for surface plasmons polaritons in applications such as sensing.

9.
J Phys Chem C Nanomater Interfaces ; 126(34): 14758-14765, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081902

RESUMO

Current multiscale plasmonic systems pose a modeling challenge. Classical macroscopic theories fail to capture quantum effects in such systems, whereas quantum electrodynamics is impractical given the total size of the experimentally relevant systems, as the number of interactions is too large to be addressed one by one. To tackle the challenge, in this paper we propose to use the Madelung form of the hydrodynamic Drude model, in which the quantum effect electron spill-out is incorporated by describing the metal-dielectric interface using a super-Gaussian function. The results for a two-dimensional nanoplasmonic wedge are correlated to those from nonlocal full-wave numerical calculations based on a linearized hydrodynamic Drude model commonly employed in the literature, showing good qualitative agreement. Additionally, a conformal transformation perspective is provided to explain qualitatively the findings. The methodology described here may be applied to understand, both numerically and theoretically, the modular inclusions of additional quantum effects, such as electron spill-out and nonlocality, that cannot be incorporated seamlessly by using other approaches.

10.
Sci Rep ; 11(1): 20278, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645897

RESUMO

Photonic hooks have demonstrated to be great candidates for multiple applications ranging from sensing up to optical trapping. In this work, we propose a mechanism to produce such bent structured light beams by exploiting the diffraction and scattering generated by a pair of dielectric rectangles immersed in free space. It is shown how the photonic hooks are generated away from the output surface of the dielectrics by correctly engineering each individual dielectric structure to generate minimum diffraction and maximum scattering along the propagation axis. Different scenarios are studied such as dual-dielectric structures having different lateral dimensions and refractive index as well as cases when both dielectrics have the same lateral dimensions. The results are evaluated both numerically and theoretically demonstrating an excellent agreement between them. These results may open new avenues for optical trapping, focusing and sensing devices via compact and simple dual-dielectric structures.

11.
Light Sci Appl ; 9: 129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32704362

RESUMO

Deflecting and changing the direction of propagation of electromagnetic waves are needed in multiple applications, such as in lens-antenna systems, point-to-point communications and radars. In this realm, metamaterials have been demonstrated to be great candidates for controlling wave propagation and wave-matter interactions by offering manipulation of their electromagnetic properties at will. They have been studied mainly in the frequency domain, but their temporal manipulation has become a topic of great interest during the past few years in the design of spatiotemporally modulated artificial media. In this work, we propose an idea for changing the direction of the energy propagation of electromagnetic waves by using time-dependent metamaterials, the permittivity of which is rapidly changed from isotropic to anisotropic values, an approach that we call temporal aiming. In so doing, here, we show how the direction of the Poynting vector becomes different from that of the wavenumber. Several scenarios are analytically and numerically evaluated, such as plane waves under oblique incidence and Gaussian beams, demonstrating how proper engineering of the isotropic-anisotropic temporal function of εr(t) can lead to a redirection of waves to different spatial locations in real time.

12.
ACS Nano ; 13(2): 1617-1624, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30629426

RESUMO

Assembling metamolecules from anisotropic, shape-engineered nanocrystals provides the opportunity to orchestrate distinct optical responses one nanocrystal at a time. The Au nanorod has long been a structural archetype in plasmonics, but nanorod assemblies have largely been limited to end-to-end or side-to-side arrangements, accessing only a subset of potential metamolecule structures. Here, we employ triangular templates to direct the assembly of Au nanorods along the edges of an equilateral triangle. Using spatially resolved, dark-field scattering spectroscopy in concert with numerical simulation of individual metamolecules, we map the evolution in surface plasmon resonances as we add one, two, and three nanorods to construct triangular nanorod assemblies. The assemblies exhibit rotation- and polarization-dependent hybridized plasmon modes, which are sensitive to variations in nanorod size, position, and orientation that lead to geometrical symmetry breaking. The triangular arrangement of nanorods supports magnetic plasmon modes where electric fields are directed along the perimeter of the triangle, and the magnetic field intensity within the triangle's open interior is enhanced. Circumferential displacements of the nanorods within the templates impart either a left- or right-handed sense of rotation to the structure, which generates a chiroptical response under unidirectional oblique illumination. Our results represent an important step in realizing and characterizing metamaterial assemblies with "open" structures utilizing anisotropic plasmonic building blocks, with implications for optical magnetic field enhancement and chiral plasmonics.

13.
Sci Rep ; 5: 9988, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25950243

RESUMO

At the expense of frequency narrowing, binary amplitude-only diffractive optical elements emulate refractive lenses without the need of large profiles. Unfortunately, they also present larger Fresnel reflection loss than conventional lenses. This is usually tackled by implementing unattractive cumbersome designs. Here we demonstrate that simplicity is not at odds with performance and we show how the fishnet metamaterial can improve the radiation pattern of a Soret lens. The building block of this advanced Soret lens is the fishnet metamaterial operating in the near-zero refractive index regime with one of the edge layers designed with alternating opaque and transparent concentric rings made of subwavelength holes. The hybrid Soret fishnet metalens retains all the merits of classical Soret lenses such as low profile, low cost and ease of manufacturing. It is designed for the W-band of the millimeter-waves range with a subwavelength focal length FL = 1.58 mm (0.5λ0) aiming at a compact antenna or radar systems. The focal properties of the lens along with its radiation characteristics in a lens antenna configuration have been studied numerically and confirmed experimentally, showing a gain improvement of ~2 dB with respect to a fishnet Soret lens without the fishnet metamaterial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA