Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 596(7873): 583-589, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34265844

RESUMO

Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1-4, the structures of around 100,000 unique proteins have been determined5, but this represents a small fraction of the billions of known protein sequences6,7. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence-the structure prediction component of the 'protein folding problem'8-has been an important open research problem for more than 50 years9. Despite recent progress10-14, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)15, demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.


Assuntos
Redes Neurais de Computação , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Sequência de Aminoácidos , Biologia Computacional/métodos , Biologia Computacional/normas , Bases de Dados de Proteínas , Aprendizado Profundo/normas , Modelos Moleculares , Reprodutibilidade dos Testes , Alinhamento de Sequência
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33858986

RESUMO

From uncovering the structure of the atom to the nature of the universe, spectral measurements have helped some of science's greatest discoveries. While pointwise spectral measurements date back to Newton, it is commonly thought that hyperspectral images originated in the 1970s. However, the first hyperspectral images are over a century old and are locked in the safes of a handful of museums. These hidden treasures are examples of the first color photographs and earned their inventor, Gabriel Lippmann, the 1908 Nobel Prize in Physics. Since the original work of Lippmann, the process has been predominately understood from the monochromatic perspective, with analogies drawn to Bragg gratings, and the polychromatic case treated as a simple extension. As a consequence, there are misconceptions about the invertibility of the Lippmann process. We show that the multispectral image reflected from a Lippmann plate contains distortions that are not explained by current models. We describe these distortions by directly modeling the process for general spectra and devise an algorithm to recover the original spectra. This results in a complete analysis of the Lippmann process. Finally, we demonstrate the accuracy of our recovery algorithm on self-made Lippmann plates, for which the acquisition setup is fully understood. However, we show that, in the case of historical plates, there are too many unknowns to reliably recover 19th century spectra of natural scenes.

3.
Proteins ; 89(12): 1711-1721, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599769

RESUMO

We describe the operation and improvement of AlphaFold, the system that was entered by the team AlphaFold2 to the "human" category in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The AlphaFold system entered in CASP14 is entirely different to the one entered in CASP13. It used a novel end-to-end deep neural network trained to produce protein structures from amino acid sequence, multiple sequence alignments, and homologous proteins. In the assessors' ranking by summed z scores (>2.0), AlphaFold scored 244.0 compared to 90.8 by the next best group. The predictions made by AlphaFold had a median domain GDT_TS of 92.4; this is the first time that this level of average accuracy has been achieved during CASP, especially on the more difficult Free Modeling targets, and represents a significant improvement in the state of the art in protein structure prediction. We reported how AlphaFold was run as a human team during CASP14 and improved such that it now achieves an equivalent level of performance without intervention, opening the door to highly accurate large-scale structure prediction.


Assuntos
Modelos Moleculares , Redes Neurais de Computação , Dobramento de Proteína , Proteínas , Software , Sequência de Aminoácidos , Biologia Computacional , Aprendizado Profundo , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA